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Dose selection and optimization is an important topic in drug development to

maximize treatment benefits for all patients. While exposure–response (E-R) analysis

is a useful method to inform dose-selection strategy, in oncology, special

considerations for prognostic factors are needed due to their potential to confound

the E-R analysis for monoclonal antibodies. The current review focuses on 3 different

approaches to mitigate the confounding effects for monoclonal antibodies in

oncology: (i) Cox-proportional hazards modelling and case-matching; (ii) tumour

growth inhibition–overall survival modelling; and (iii) multiple dose level study design.

In the presence of confounding effects, studying multiple dose levels may be required

to reveal the true E-R relationship. However, it is impractical for pivotal trials in

oncology drug development programmes. Therefore, the strengths and weaknesses

of the other 2 approaches are considered, and the favourable utility of tumour

growth inhibition–overall survival modelling to address confounding in E-R analyses

is described. In the broader scope of oncology drug development, this review

discusses the downfall of the current emphasis on E-R analyses using data from single

dose level trials and proposes that development programmes be designed to study

more dose levels in earlier trials.
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1 | INTRODUCTION

While contemporary drug development in oncology strives to deliver

novel therapies to patients rapidly, it is also important to optimize

dosing regimens to improve patient-centred care. Doses selected for

pivotal trials may be efficacious doses, but not necessarily optimal to

minimizing toxicity and maximizing clinical efficacy for all patients.

Exposure–response (E-R) analysis is an approach that is used to

support dose selection by characterizing the relationship between

drug concentrations, efficacy, and safety. A variety of E-R analyses

have supported dose labelling of many approved oncology drugs.1

Among the oncology therapies, however, additional complexity has

been observed in characterizing E-R relationships for monoclonal anti-

bodies. Specifically, prognostic factors can impact both pharmacoki-

netics (PK) and efficacy. This may result in a correlation between

exposure and outcome that does not represent a causal E-R relation-

ship and therefore, may not provide a useful basis for dose

recommendations. This was exemplified by the HELOISE trial

(NCT01450696) of trastuzumab, which was conducted as part of a

postmarketing requirement. Following the phase 3 trial ToGA

(NCT01041404), trastuzumab was approved in combination with

chemotherapy for first-line treatment of HER2-positive advanced
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gastric cancer. An E-R analysis, however, found that the patients

in the lowest exposure quartile had an overall survival

(OS) approximately 8 months shorter than those with higher

exposures.2 This suggested that increasing trastuzumab exposure in

this low-exposure subgroup may improve survival benefit, and thus

supported the requirement of conducting a postmarketing trial for a

higher dose. For this requirement, in the HELOISE trial, a higher

trastuzumab dose was compared with the labelled dose in a popula-

tion with similar prognostic factors as the low-exposure subgroup of

the ToGA trial. Despite reliably increasing exposure, the higher dose

did not improve OS in patients.3 This discrepancy between the

results of the E-R analysis and the HELOISE trial indicates

confounding in E-R analyses of monoclonal antibodies at a single dose

level in oncology.

In addition to the potential confounding factors for E-R analyses

in oncology, there have been reports of time-dependent changes in

the PK that require additional considerations. Monoclonal antibodies

that target B-cell receptors, such as rituximab, have been reported to

exhibit time-dependent decrease in clearance (CL) owing to target

mediated drug disposition.4–6 Time-dependent PK has also been

observed for checkpoint inhibitors nivolumab, pembrolizumab,

durvalumab, avelumab and ipilimumab. Across these molecules, the

range of CL decrease over time was 17–32%.7–11 Best overall

response was included as a covariate on CL in the time-dependent

population PK models of nivolumab and pembrolizumab.7,9 The time-

dependent population PK model of durvalumab included time-varying

albumin and tumour size as covariates on CL.8 While the final models

for avelumab and ipilimumab did not incorporate response or time-

varying biomarkers as covariates on CL, visual inspection of estimated

change in CL over time demonstrated a larger reduction in CL in

responders than in nonresponders.10,11 Overall, the decrease in CL

over time in these molecules corresponded to changes in patients'

prognoses based on their responses to treatments over time. This

observation may be attributed to changes in catabolic degradation of

the monoclonal antibodies as a result of changing disease status.12

The changing drug CL and patient prognostic factors over time could

potentially confound E-R analyses.

In this review we will discuss key considerations in interpreting

E-R relationships and mitigation strategies to address the confounding

effects in E-R analyses in oncology.

2 | E-R ANALYSIS CONSIDERATIONS IN
ONCOLOGY

To address confounding factors in E-R analyses for monoclonal

antibodies in oncology several key determinants need to be

considered. In this review we describe the importance of selecting the

appropriate drug exposure metric for E-R analyses and summarize

3 main approaches in oncology to address confounding in E-R

analyses: Cox proportional-hazards modelling (CPH) and case-

matching analysis; tumour growth inhibition OS (TGI-OS) modelling,

and clinical studies with multiple dose levels (Figure 1, Table 1). In

addition to describing these approaches we will discuss their strengths

and limitations. The current review will focus on E-R analyses for

exposure–survival relationships.

2.1 | Selection of drug exposure metric

2.1.1 | Pharmacokinetic parameters

For monoclonal antibodies, particularly those that demonstrate time-

dependent PK, the selection of the appropriate exposure metric to

use for E-R analyses is critical. An E-R analysis simulation for

nivolumab, for example, tested 3 different exposure metrics and

resulted in different E-R conclusions. The exposure metrics used

were: (i) average concentration at steady state (Cavgss); (ii) average

concentration at cycle 1 (Cavg1st-dose); and (iii) trough concentration at

cycle 1 (Cmin1st-dose).
13 When Cavgss was used as the exposure metric

there was a steep E-R relationship with a hazards ratio (HR) of 0.92

and 0.14 between quartiles 1 and 4, and the case-matched control

arm, respectively. However, when Cavg1st-dose and Cmin1st-dose were

used the apparent E-R relationship was flat. The flat E-R relationship

is consistent with the lack of dose–response relationship derived from

the randomized dose-ranging trial for nivolumab.14 The observed

inconsistency in E-R relationship between the different exposure met-

rics used (Cavgss, Cavg1st-dose and Cmin1st-dose) can be attributed to

the dependence of Cavgss on concentrations from later post-

treatment time points. Patients with improving disease status have

reduced drug clearance, so at later time points there is an apparent

correlation between exposure and response. Using exposure metrics

derived from earlier time points reduces the risk of change in disease

status influencing PK, and allows for more accurate assessment of the

impact of treatment exposure on clinical response.15

In addition to using exposure metrics derived from early time

points, consideration should be placed on whether observed or model-

derived exposure metrics are used in the E-R analysis. In the E-R

analysis for trastuzumab emtansine (T-DM1) the results of CPH were

not consistent between model-derived and observed exposure metrics.

After adjusting for baseline risk factors in the analyses for both metrics

the model-predicted Cmin1st-dose and area under the curve at cycle

1 (AUC1st-dose) were significantly associated with OS although the

observed Cmin1st-dose and AUC1st-dose were not.16 Due to the limited

understanding of this discrepancy, a strong recommendation could not

be made regarding the selection of observed or model-derived metrics,

and it would be prudent for an E-R analysis to examine both. The

discrepancy could also be the result of using an inadequate population

PK (popPK) model. For trastuzumab, a new popPK model incorporating

both linear and nonlinear elimination published in 201917 was able to

describe the observed data better than the original linear popPK

model.18 As such, should an improved popPK model for T-DM1

becomes available, the E-R relationship for T-DM1 using predicted

exposure should be re-assessed. Upon examining both metrics, if either

of them is significantly associated with OS, further investigation into

the population PK model and E-R analysis is warranted.
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2.1.2 | Assay considerations

The use of free vs total PK assays to measure drug exposure and their

impact on E-R relationships should be considered. It has been

suggested that since free drug concentration is in excess from binding

to targets and proteins it is unsuitable for E-R analyses.19 However,

free drug concentration may also reflect active drug in the circulation

that can bind to targets, and therefore be relevant in an E-R analysis.

It is also thought that because monoclonal antibodies are dosed in

excess of target ligands, total concentration would approximate free

concentrations, and selection of free vs total assay would not impact

the E-R analysis.20 Developing bioanalytical assays to measure free

concentrations for monoclonal antibodies also faces numerous

technical challenges.20 As assays are studied and developed further,

potential impacts on E-R analyses should be evaluated.

E-R analyses for drugs with multiple analytes such as antibody–

drug conjugates (ADCs) involve additional complexities. There is a

limited understanding of whether exposure to the cytotoxic drug,

TABLE 1 Summary of approaches to address potentially confounded E-R analyses

Approach Description Strengths Limitations

Cox-proportional hazards

modelling

Develop a regression model to

evaluate the association between

hazards/covariates and overall

survival

• validate covariates by screening for

statistical significance

• requires assumptions about the

effect of covariates on the E-R

relationship

Case-matching analysis Build an analysis dataset including

patients with similar baseline

characteristics between treatment

and control arms

• does not require strict assumptions

about the effect of covariates on

the E-R relationship

• unable to match case to control if

limited sample size

• if no screening methods are used

for statistical significance, selection

of covariates can be subjective

Tumour-growth

inhibition–OS modelling

Develop a model to describe tumour

dynamics, and evaluate this metric

as a covariate on OS

• change in tumour size serves as a

marker of changing disease status

and as an informative predictor of

survival

• able to separate disease-specific

and drug-specific effects on OS

• SLD may not provide adequate

information on tumour dynamics

• requires ≥1 post-treatment SLD

assessment for patients (may not

be available for early dropout)

• nonexposure-driven TGI models

require assumptions and empirical

descriptions of tumour shrinkage

and growth

• new lesions typically not

considered

Multiple dose levels Study multiple dose levels of the

drug in a large, randomized groups

with balanced baseline

characteristics

• dose–response relationship is not

confounded by the effect of

prognostic factors that confound

the E-R relationship

• requires no assumptions about E-R

relationship

• costly to perform a separate trial or

include additional arms

• unfeasible in rare populations

CPH, Cox-proportional hazards; E-R, exposure–response; OS, overall survival; SLD, sum of longest diameter

F IGURE 1 Various methods to
address potentially confounded positive
E-R relationships. Case examples of
successful adjustment for confounding
factors are listed under each method. E-R,
exposure–response; CPH; cox
proportional hazard; TGI-OS, tumour
growth inhibition–overall survival
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monoclonal antibodies, ADC or other intermediates provides the best

correlation for E-R relationships.21,22 The analyte driving response

appears to vary across different ADCs, and this issue should be care-

fully considered in E-R analyses for ADCs.

2.2 | Selection of adjustment models

2.2.1 | CPH modelling and case matching

CPH modelling is a survival analysis in which a multivariate regression

model (Equation 1) evaluates the association between covariates

(e.g. baseline prognostic factors, exposure measures) and the time

until a specific event occurs. The comparison of response between

treatment groups is given as an HR, and this ratio is assumed to be

constant over time (Equation 2). The model allows for estimation of

the relationship between exposure and response. Multiple covariates

can be evaluated in the model for statistical significance, and it is

imperative that they are included to correct for the effects of

confounding factors that might otherwise bias the E-R analysis. The

structure of the model assumes that the effects of these covariates

are time-independent, and also depend upon the value of the

covariate and a constant coefficient. This approach has been used to

adjust for confounding factors in E-R analyses for T-DM1.16,23

h tð Þ= h0 tð Þ× exp b1X1 + b2X2 +…bpXpð Þ ð1Þ

where h(t) describes the hazard of an event at time t, determined by a

set of covariates (X1, X2, …, Xp); h0(t) describes the baseline hazard at

time t; and the coefficients (b1, b2, …, bp) describe the relationship

between the covariates and the hazard.

HR=
h tð Þy
h tð Þz

=
exp b1X1y + b2X2y +…bpXpyð Þ
exp b1X1z + b2X2z +…bpXpzð Þ ð2Þ

where HR is the ratio of the expected hazards of 2 groups, y and z,

and is time-independent. Components of this equation are the same

as described for Equation 1.

Case-matching analysis has been widely used in observational

studies to adjust for confounding factors. The method was more

recently applied to E-R analysis for the first time by Yang et al. and

has since been used for E-R analyses of multiple oncology biologics

such as T-DM1 and nivolumab.2,13,16 Case-matching analysis adjusts

for confounding factors by balancing the distribution of baseline risk

factors between the control and treatment groups prior to calculating

the HR. Only patients in the control arm that are similar or matched in

baseline risk factors to patients in the treatment arm are included in

the analysis. The matching process can be optimized with a variety of

methods including propensity score matching, Mahalanobis distance

matching, and coarsened exact matching.24–26 In the more commonly

used propensity score matching, the score is typically estimated using

a linear regression model, and patients with similar scores are

matched. Propensity score models can be diverse, as a number of

other regression modelling structures can be used to incorporate non-

linearity and nonadditivity, and a number of variable selection

methods can be explored (e.g. lasso, elastic net).27–29 The selection of

methodology for a given study is an ongoing topic of discussion, and

multiple models may be tested for sensitivity. After case-matching,

the endpoint can be directly compared between the matched groups

by a method of choice (e.g. Kaplan–Meier survival analysis, CPH).

CPH modelling and case-matching address confounding factors in

an E-R analysis by accounting for the potential imbalance of baseline

covariates in different exposure subgroups. For both approaches to

successfully account for confounding in monoclonal antibodies in

oncology appropriate covariates that account for imbalances in prog-

nostic factors must be selected. The number of covariates is limited

by the increasing potential for over-parameterization of results. In a

comparison of response in the Q1 exposure subgroup and the control

arm, Li et al. used CPH modelling and case-matching.16 Case-matching

analysis demonstrated a greater reduction of the HR. While the case-

matching analysis had additional covariates included that could con-

tribute to the reduction of HR the reduction can also be attributed to

the limitation of CPH modelling where the structure of the hazards

model equation imposes assumptions about the effect of covariates

on the E-R relationship.

Case-matching analysis is an appealing alternative to CPH model-

ling, as it requires no assumptions regarding the relationship between

covariates and the E-R relationship. In addition, there is no specific

method to select covariates used for matching, and covariates are not

screened for significance in the case-matching analysis. The retention

of both statistically significant and insignificant covariates may allow

for an increased capacity for correction of confounding factors com-

pared to methods that screen for covariates. Covariates that are clini-

cally significant may be statistically insignificant in an analysis due to

factors such as small sample size, variability and correlation with other

risk factors. Case-matching analysis is limited by the difficulty in

matching case to control when using a small study sample or a large

number of covariates. If data from an adequate sample size are

available, and there is no need for validation of covariates by statisti-

cal significance case-matching appears to correct for confounding

factors more effectively than CPH modelling.

2.2.2 | TGI-OS modelling

The TGI-OS model is a disease progression model. It is a useful tool in

oncology to delineate E-R relationships in the presence of con-

founding factors. The model is composed of 2 parts: a TGI model that

describes tumour dynamics, and a multivariate survival model that

incorporates a TGI metric as a covariate on OS. The TGI metric serves

as a marker of disease status. TGI-OS modelling mitigates con-

founding in the E-R analysis by directly evaluating the treatment

effect on TGI then separately accounting for the effect of prognostic

factors on OS. By mitigating the confounding effects of prognostic

factors on the relationship between treatment effect and OS, the

TGI-OS model can avoid a false positive E-R relationship.30–32 The

2496 KAWAKATSU ET AL.
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TGI model structure is typically a simple biexponential model

(Equation 3).33

f tð Þ= exp −d× tð Þ+ exp g× tð Þ−1 ð3Þ

where f(t) is tumour size at time t, d is the decay rate constant and g is

the growth rate constant.

In multiple cancer types, the OS is correlated with the tumour

dynamics such that the probability of survival decreases with the

increase in tumour growth rate (g in Equation 3).33–43 Key determi-

nants for survival are baseline prognostic factors specific for the can-

cer type and are incorporated in the multivariate TGI-OS models.

Drug exposure is evaluated as a covariate in the final multivariate

model.30,31 If it is not significant, this suggests a flat E-R relationship.

OS can be simulated for exposure quartiles with normalized prognos-

tic factors to evaluate the presence of an E-R relationship. This

approach can remove the confounding effects of imbalanced prognos-

tic factors in different exposure quartiles. Multivariate TGI-OS

modelling has successfully evaluated E-R relationships for

atezolizumab in multiple indications, and its role in E-R analysis has

been increasingly accepted by regulatory agencies.31

While TGI-OS modelling allows for the direct separation of treat-

ment effect and disease effects, several limitations must be consid-

ered. Nonexposure-driven TGI models while simpler and more flexible

than exposure-driven models require assumptions and empirical

descriptions of tumour shrinkage and growth. Model building for both

exposure and nonexposure-driven models requires 1 or more post-

treatment assessments for tumour size, and this may not be feasible

in some patients. The incorporation of multiple tumour size assess-

ments in the model, however, makes tumour dynamics a patient-

specific explanatory variable and informative predictor of survival.

TGI-OS model predictions for treatment effect should be interpreted

cautiously when OS may be affected by additional, subsequent treat-

ments that are not accounted for in the model. With the TGI-OS

model, it is also difficult to account for the potential appearance of

new lesions. Zecchin et al. developed a pharmacometric model to

incorporate the effect of new lesions on OS in metastatic ovarian can-

cer, but additional examples and uses of this approach are currently

limited.44,45 Because the TGI-OS model predicts OS based on tumour

dynamics, it is more suitable for use in advanced malignancies, where

tumour size is typically measured over time.

2.3 | Selection of study design

When an E-R analysis using an adjustment model concludes a positive

E-R relationship, it is difficult to discern whether there is a true posi-

tive E-R relationship, or there are additional hidden confounders. The

only approach that allows for certainty in a positive E-R relationship is

to study multiple dose levels of the drug in large, registrational trials.

These trials should have randomized groups with balanced baseline

characteristics. Studying multiple dose levels allows for the identifica-

tion of a true E-R relationship because the dose–response relationship

is not confounded by the prognostic factors that confound the E-R

relationship. However, oncology phase 3 trials typically only study a

single dose level, and the exposure range included in the E-R analysis

for OS is limited. Including additional arms or performing separate

trials to increase this exposure range allows for a more robust E-R

analysis. In the previously described case of trastuzumab, the

HELOISE trial studying high dose and standard dose trastuzumab rev-

ealed that the case-matching analysis conducted for the ToGA study

was confounded, and that there appeared to be no causal relationship

between exposure and response for trastuzumab in metastatic gastric

cancer.2,3 A similar scenario was observed with pembrolizumab in

melanoma and nonsmall-cell lung carcinoma. Pembrolizumab was

studied across a 5-fold dose range. Two case-matching analyses were

performed for patients receiving 2- and 10-mg/kg dose levels, respec-

tively. In the unmatched analysis, a steep E-R relationship was

observed across exposure ranges within each dose level. While case-

matching analysis corrected this E-R relationship to a certain degree,

it still suggested a positive E-R relationship. When examining hazard

ratios across the 2 dose levels, however, the apparent E-R relationship

was flat and suggested that higher exposures do not increase OS. The

case-matching analysis was unable to fully account for confounders.46

Because dose–response relationships are not confounded by the

prognostic factors that confound E-R relationships studying multiple

dose levels is a robust approach to examine E-R relationships. Unlike

statistical approaches discussed in the previous sections, it requires

no assumptions about covariates or the structure of the E-R relation-

ship. The major limitation with this approach is the time and cost asso-

ciated with additional trials or treatment arms. In addition, this

approach may not be feasible in rare populations. The utility of study-

ing multiple dose levels may also depend on characteristics of the

drug. If a drug has a wide therapeutic window (i.e. monoclonal anti-

bodies), and tested doses appear to be at the top of the dose–

response curve studying multiple dose levels in registrational trials

may not be necessary. It may be useful if a drug has a narrow thera-

peutic window and requires quantification of E-R relationships for

optimal dose selection. Ultimately, limitations in feasibility motivate

sponsors to consider alternative approaches to E-R analyses before

studying multiple dose levels.

3 | DISCUSSION

The inability to select an appropriate dose in pivotal trials has been

shown to contribute to the declining success rates of drug develop-

ment programmes.47,48 A study examining Food and Drug Administra-

tion approval packages between 2015 and 2017 found that, in a third

of development programmes, no E-R analysis was reported.49 The

expanded use of E-R analysis in more drug development programmes

may serve as a solution for declining success rates. E-R analysis is par-

ticularly useful in early clinical trials where multiple doses are adminis-

tered to inform dose selection and optimization. It is often repeated in

phase 3 trials given the meaningful sample size for efficacy and safety

interpretation. Rather than assuming that 1 dose fits all patients, this

KAWAKATSU ET AL. 2497
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approach identifies whether specific patient subgroups would benefit

from alternative doses. A successful example of E-R application was

shown for the exposure–survival analysis of ipilimumab. Ipilimumab

was originally approved in several countries at a dose of 3 mg/kg for

the treatment of advanced melanoma. A phase 2 dose-ranging study,

however, suggested improvement in OS with the 10-mg/kg dose.50

While this study was not statistically powered to detect differences in

survival, an E-R analysis pooling data from 4 phase 2 trials demon-

strated that OS improved with increasing exposure. In the CPH model

results patients in the 5th and 95th percentiles of steady state trough

concentration (Cminss) had an OS HR of 1.52 and 0.552, respectively,

relative to patients with median Cminss.
51 This suggested that OS

improved with increased ipilimumab doses. In the postmarketing trial

conducted with the 3- and 10-mg/kg doses this relationship was con-

firmed. Median OS was 15.7 months for the 10-mg/kg dose group,

and 11.5 months for the 3-mg/kg dose group (HR 0.84, P = .04).52

The results of this phase 3 trial are included in the ipilimumab label,

and demonstrate that E-R analyses could identify potential survival

benefits gained from increased doses and exposures. While the-

10 mg/kg dose provided a survival benefit it was also associated with

increased treatment-related adverse events. The 3-mg/kg dose

was selected as the labelled dose after accounting for efficacy benefit

and safety risk.

While the utility of E-R analyses applies across a variety of thera-

peutic areas, additional considerations are needed for oncology due to

the impact of prognostic factors on both exposure and outcome. Per-

formance status, clinical symptoms (dyspnoea, appetite loss, cognitive

function), primary tumour site and C-reactive protein concentration

are examples of prognostic factors used to predict outcome in clinical

settings.53,54 In oncology, E-R is more than just considering the unidi-

rectional relationship where the dose affects exposure which subse-

quently affects response. OS is often the primary response endpoint

for oncology trials, and its relationship with exposure is confounded

by prognostic factors. Recognizing and accounting for the impact of

time-varying clinical response and prognostic factors on exposure are

critical for accurate E-R interpretations.55 This relationship is

illustrated by the findings for nivolumab, avelumab, durvalumab,

pembrolizumab and ipilimumab, where patients with improved post-

treatment disease status showed greater time-dependent decreases

in drug CL.7–11 The mechanism is not fully understood, but there is an

interaction between clinical response, prognostic factors and

exposure. When patients respond to treatment their prognostic

factors improve, which in turn decrease the drug CL and increase drug

exposure (Figure 2). In an E-R analysis, this could lead to incorrect

conclusions that higher drug exposure caused clinical response when

in fact the E-R relationship is confounded by the effect of changing

prognostic factors on exposure. This may be caused by the unique

nature of disease progression in oncology. As a patient's disease

status declines clinical changes such as cachexia and inflammation can

increase the catabolism and clearance of both endogenous

and therapeutic proteins.56,57 This is supported by the significance

of tumour burden and albumin as a covariate on CL in the

population PK analyses for nivolumab, avelumab, durvalumab, and

pembrolizumab.8–10,13 Clearance increased with higher tumour bur-

den and lower albumin concentrations. In addition, time-dependent

PK was observed for nivolumab in advanced malignancies, but not in

patients with resected melanoma.58 The latter had tumours surgically

resected prior to adjuvant treatment with nivolumab and were overall

healthier than patients with advanced malignancies. This supports the

impact of disease status and prognostic factors on exposure. The

hypothesis that clearance is associated with disease status was further

evaluated using a machine-learning approach. Data from patients with

melanoma and renal cell carcinoma treated with nivolumab were used

to develop a model describing the relationship between baseline cyto-

kine features and nivolumab clearance. Model-predicted clearance via

cytokine signature was significantly associated with OS across all of

the studies, which further supports the hypothesis for the relationship

between clearance and disease status.59,60 Looking prospectively,

these collective observations also suggest that the presence of time-

dependent PK, and the significance of albumin or tumour burden as a

covariate on CL would indicate the risk of a confounded E-R analysis.

A confounded E-R analysis may result in false positive E-R

relationships, which may lead to the wrong conclusion that the dose

for patients with lower exposure is suboptimal. As seen in the

ToGA/HELOISE example, it may lead to the initiation of a new trial in

an attempt to rescue patients who failed treatment. Considering these

risks 3, mitigation strategies have been discussed in this review: CPH

modelling and case matching analysis; TGI-OS modelling; and multiple

dose study design. Studying multiple dose levels in randomized,

balanced groups appears to be an effective approach that can

F IGURE 2 Illustration of the relationships
between exposure, response and prognostic
factors
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distinguish with certainty between a true-positive E-R relationship vs

a false-positive relationship with hidden confounders. This strategy,

however, is impractical in most oncology indications, and may offer

limited value for monoclonal antibodies with a wide therapeutic win-

dow. TGI-OS modelling explicitly separates the drug-specific and

disease-specific effect on OS when evaluating the E-R relationship. It

also incorporates an estimate of tumour dynamics that serves as an

informative biomarker of disease status. CPH modelling and case-

matching analysis lack this separation between drug and disease-

specific effects. This makes it more challenging to consistently

distinguish between exposure- and prognostic factor-driven changes

in OS. Case-matching may be preferred over CPH modelling due to

the assumptions involved in CPH modelling regarding the relationship

between predictors and outcome. While a suggestion of the relative

utility of each approach is made here, the unique limitations of each

methodology should be considered.

While the effect of changing prognostic factors on exposure and

OS can confound exposure–efficacy relationships it does not appear

to significantly impact exposure–safety relationships. Among mole-

cules discussed here, it appears that exposure–safety analyses for

pembrolizumab, nivolumab, durvalumab and T-DM1 have not faced

the same confounding issues as exposure-efficacy analyses.16,23,61–66

If patients with worsening disease status and prognostic factors are

more likely to experience adverse events, and have a decreased drug

exposure it could be thought that differences in prognostic factors

can confound the exposure-safety relationship. The confounding,

however, would contribute to an inverse E-R relationship rather than

a positive relationship. In addition, because safety endpoints in E-R

analyses are usually drug-related, adverse events rather than disease-

related adverse events exposure–safety relationships may be less

likely to be influenced by differences in prognostic factors.

Current oncology drug development is rapid and aggressive.

Many recent development programmes bypass a dose-ranging phase

2 trial and go directly from phase 1 to phase 3 trials with a single dose

level. In some programmes, a phase 2 trial is done, but only with a

single dose level or a limited efficacy endpoint. This severely limits the

range of exposure data available for an exposure–survival analysis and

increases the risk of a confounded E-R analysis. The Food and Drug

Administration's E-R Guidance has previously described the risk of

characterizing E-R relationships based on data from single dose

levels.67 Sponsors should consider conducting expanded dose-ranging

trials early in development programmes to better inform dose selec-

tion and potentially avoid the need to study multiple dose levels in

late phase trials. Despite the current limitations of E-R analyses, they

are required to be included as part of a filing package. The HELOISE

trial is an example of the potential risks of confounded E-R analyses.

The E-R analysis performed using data from the ToGA trial supported

the conduct of the HELOISE trial. No dose–response relationship was

observed, however, and patients did not benefit from higher doses of

trastuzumab. If the E-R analysis is limited by the range of available

exposure data, and could be confounded, any observed E-R

relationship should be interpreted with great caution.

Drug development must not only focus on developing novel

treatment modalities, but also on selecting the optimal dose for

patients. E-R analysis is a useful tool for dose optimization in a variety

of therapeutic areas, and also has many applications to support

modern drug development. Despite its wide utility, E-R analysis in

oncology faces unique challenges when applied to monoclonal anti-

bodies tested at a single dose level. E-R analyses in oncology are

susceptible to confounding from unique, disease-related factors.

Mitigation strategies presented in the current paper can be employed

to account for confounding factors and elucidate the true E-R

relationship. In a broader scope, the design of oncology drug develop-

ment programmes may be structured to more effectively inform

dose–response and E-R relationships for dose optimization. Once an

E-R analysis is performed, its application in decision-making must be

carefully considered based on the methodology and the data used in

the analysis. The improvement and effective use of E-R analysis is an

effort that must be addressed on multiple fronts of oncology drug

development with the common goal of maximizing benefit to the

patient and minimizing toxicities.
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