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abstract

PURPOSE Drug development in oncology currently is facing a conjunction of an increasing number of anti-
neoplastic agents (ANAs) candidate for phase I clinical trials (P1CTs) and an important attrition rate for final
approval. We aimed to develop a machine learning algorithm (RESOLVED2) to predict drug development
outcome, which could support early go/no-go decisions after P1CTs by better selection of drugs suitable for
further development.

METHODS PubMed abstracts of P1CTs reporting on ANAs were used together with pharmacologic data from the
DrugBank5.0 database to model time to US Food and Drug Administration (FDA) approval (FDA approval-free
survival) since the first P1CT publication. The RESOLVED2 model was trained with machine learning methods.
Its performance was evaluated on an independent test set with weighted concordance index (IPCW).

RESULTSWe identified 462 ANAs from PubMed that matched with DrugBank5.0 (P1CT publication dates 1972
to 2017). Among 1,411 variables, 28 were used by RESOLVED2 to model the FDA approval-free survival, with an
IPCW of 0.89 on the independent test set. RESOLVED2 outperformed amodel that was based on efficacy/toxicity
(IPCW, 0.69). In the test set at 6 years of follow-up, 73% (95% CI, 49% to 86%) of drugs predicted to be
approved were approved, whereas 92% (95% CI, 87% to 98%) of drugs predicted to be nonapproved were still
not approved (log-rank P , .001). A predicted approved drug was 16 times more likely to be approved than
a predicted nonapproved drug (hazard ratio, 16.4; 95% CI, 8.40 to 32.2).

CONCLUSION As soon as P1CT completion, RESOLVED2 can predict accurately the time to FDA approval. We
provide the proof of concept that drug development outcome can be predicted by machine learning strategies.

Clin Cancer Inform. © 2019 by American Society of Clinical Oncology

INTRODUCTION

Drug development in oncology is a fast-evolving field
with numerous challenges.1 More than 1,000 anti-
neoplastic agents (ANAs) were under investigation
in 2018.2 Oncology had the highest overall attrition
rate for US Food and Drug Administration (FDA)
approval from phase I (95% between 2006 and
2015), phase II (92%), and phase III (67%) trials.3,4

The community aims to limit the recruitment of pa-
tients to phase II and/or large phase III studies that
evaluate treatment that will not be approved for
various reasons: It impairs recruitment of patients in
other studies, slows down the whole drug develop-
ment process, and results in substantial financial
loss for the pharmaceutical industry and aca-
demic institutions.5 Exposure of patients to ineffec-
tive treatments and financial loss has urged the
pharmaceutical industry and academic investiga-
tors to develop new tools to enhance drug de-
velopment strategies,6 such as computer-assisted
decisions.

Phase I trials in oncology usually are dedicated to
safety analysis and meanwhile can provide early sig-
nals of efficacy of the compounds.7 Classic strategies
to improve research and development5 are the use of
surrogate markers of efficacy (overall response rate as
a surrogate of overall survival)8,9 or predictive bio-
markers of efficacy (molecular alterations from the
tumor or liquid biopsy).10,11 The biomarker-based
strategy used in phase I can significantly increase
response rate and the likelihood of FDA approval.12

A tool to predict FDA approval for new compounds
individually on the basis of early clinical data is still
lacking. Pharmacologic data may be a cornerstone to
perform such predictions for compounds with origi-
nal targets or new mechanisms of action. High-
volume pharmacologic data are currently available
in open-source databases, such as DrugBank5.0.13

In the current study, we aimed to demonstrate the
feasibility and utility of a recommender system that is
based on machine learning and that could enhance
drug development (RESOLVED2) in oncology by

ASSOCIATED
CONTENT

Data Supplement

Author affiliations
and support
information (if
applicable) appear at
the end of this
article.

Accepted on April 17,
2019 and published at
ascopubs.org/journal/
cci on September 20,
2019: DOI https://doi.
org/10.1200/CCI.19.
00023

1

D
ow

nl
oa

de
d 

fr
om

 a
sc

op
ub

s.
or

g 
by

 9
6.

24
2.

13
2.

16
 o

n 
A

pr
il 

4,
 2

02
5 

fr
om

 0
96

.2
42

.1
32

.0
16

C
op

yr
ig

ht
 ©

 2
02

5 
A

m
er

ic
an

 S
oc

ie
ty

 o
f 

C
lin

ic
al

 O
nc

ol
og

y.
 A

ll 
ri

gh
ts

 r
es

er
ve

d.
 

https://ascopubs.org/doi/suppl/10.1200/CCI.19.00023
http://ascopubs.org/journal/cci
http://ascopubs.org/journal/cci
http://ascopubs.org/doi/full/10.1200/CCI.19.00023
http://ascopubs.org/doi/full/10.1200/CCI.19.00023
http://ascopubs.org/doi/full/10.1200/CCI.19.00023
http://crossmark.crossref.org/dialog/?doi=10.1200%2FCCI.19.00023&domain=pdf&date_stamp=2019-09-20


supporting an early go/no-go decision as soon as phase I
trial completion.

METHODS

ANAs: Identification and Selection

We extracted all PubMed abstracts in English and related to
phase I trials in oncology that evaluated ANAs for adult
patients (package RISMed in R version 3.3.3), without
limitation for date of publication (Data Supplement). Drug
names were extracted from the titles of PubMed articles by
regular expressions (package stringr). Drug names were
identified by their suffix; for example, all monoclonal an-
tibody names were queried from the mab suffix (see Data
Supplement for suffix list). For encoded drug names, we
extracted drug codes using the following regular expres-
sion: get any word with two to four numerical characters,
optionally followed by one to eight digital characters (“\\b
[:alpha:]{2,4}-?[:digit:]{1,8}\\b”).

All article titles where no drug or code was identified were
manually checked. The PubChem database14 and
Chemical Identifier Resolver15 were downloaded to anno-
tate all identified drugs with all available aliases. Individual
drug names/codes were manually confirmed by a search
of the National Cancer Institute Drug Dictionary,16

PubChem,14 and Google (Mountain View, CA) and to ob-
tain an alias for a drug code, when available.

ANA Annotations: Pharmacologic Data

To use pharmacologic characteristics in modeling, we
matched drugs identified from the PubMed abstract corpus
to DrugBank5.0 database identifiers.13 FromDrugBank5.0,
we extracted the drug pharmacologic category and drug
molecular target.17 Briefly, the *.xml database file was
downloaded and processed using a Python-based program
(ElementTree module; Python Software Foundation, Wil-
mington, DE). Each drug was annotated with feature lists of
various lengths; each feature was transformed as binary
variables (Data Supplement). Scripts are available at
https://github.com/DITEP/RESOLVED2.

Results of Early Clinical Trial Data

For each ANA, the earliest phase I trial (without ANA
combination) was selected as follows: the first clinical study
reporting observations of tolerability in human, or the first
phase I trial, or the first-in-human trial, regardless of the
inclusion criteria. Drugs for which the earliest phase I trial
abstract was not available were excluded. We selected only
drugs initially developed as ANAs (ie, antibiotics or anti-
rheumatoid agents subsequently developed as ANAs were
not retained). In addition, when only phase II trial publi-
cations were available in PubMed, conference abstracts
that reported dose escalation results from phase I were
considered (see the Data Supplement for the abstract
identifier list).

The following variables were manually extracted from ab-
stracts: primary tumor sites; study enrichment with a spe-
cific tumor site; and mention of drug target, dose expansion
cohort, molecular biomarkers, pathologic biomarkers, cir-
culating biomarkers, dose-limiting toxicity (DLT) or maxi-
mum tolerated dose (MTD), antitumor clinical activity,
complete tumor response, objective response rate, oc-
currence of Common Terminology Criteria for Adverse
Events (version 4.0) grade V treatment-related adverse
event, and treatment-related cardiac or neuropsychological
adverse events (see the Data Supplement for variable
definitions).

Primary Outcome of Interest: FDA Approval-Free Survival

We considered time to FDA approval as a right-censored
variable to consider the unknown probability of future
approval for drugs under follow-up. The FDA approval
database (Drugs@FDA) was extracted from the FDA portal
on July 30, 2018, and thus considered as the date point for
the nonapproved drugs.18 FDA approval was considered an
event, whereas drugs without FDA approval were censored
at the time of date point. We defined FDA approval-free
survival (FDA-aFS) as the time between the first publication
date of the earliest phase I trial to the date of first FDA
approval, censored by date of last news.

CONTEXT

Key Objective
We aimed to evaluate the feasibility and utility of a machine learning recommender system to predict drug development

outcome in oncology and, therefore, to support an early go/no-go decision as soon as phase I trial completion.
Knowledge Generated
RESOLVED2 is a lasso penalized Cox regression model. To train RESOLVED2, we developed a new metric, US Food and Drug

Administration (FDA) approval-free survival, defined by the time between publication of the first early clinical trial that
reports the clinical effect of a drug and FDA approval, censored by date of last news. From pharmacologic data and the early
clinical trial’s PubMed abstracts, RESOLVED2 can predict accurately the time to FDA approval for an antineoplastic agent.

Relevance
Our work demonstrates that machine learning approaches can enhance drug development in oncology by supporting early

go/no-go decisions on the basis of prediction of drug approval.

Beinse et al
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Statistical Analysis: Machine Learning Model and

Performance Evaluation

Descriptive statistics were used to describe the earliest
phase I trial data (absolute value and percent for binary
variables; median and interquartile range [Q1-Q3] for
continuous variables). FDA-aFS follow-up was described
using the Kaplan-Meier method, with median, range, and
Q1-Q3.

Statistical analyses were performed with R version 3.3.3
(see https://github.com/DITEP/RESOLVED2 for scripts).
The data set was randomly split using the package caret in
a training set (70% for model training) and a test set (30%
for model performance evaluation) with similar time dis-
tribution. The test set remained unused during all training.
All DrugBank5.0 categorical features were encoded as
binary variables. Finally, all features were binary variables.
To maximize the number of drugs with complete annota-
tion, variables were rejected rather than drugs when
missing data were more than 2.5%.

A multivariable Cox model with lasso penalization was
trained to predict the FDA-aFS for each ANA.19 To avoid
overfitting and to allow feature selection, inverse per-
formance of the lasso (L1 normalization) penalization
parameter (λ-value) was minimized on a 100-fold cross-
validation set derived from the training set with the package
glmnet.20

Performance of the RESOLVED2 predictions for FDA-aFS
was estimated by the concordance index (C-index) using
both nonweighted (survcomp package) and weighted
(inverse of the probability of censoring weighted estimate
[IPCW]; pec package) methods. The area under the re-
ceiver operating characteristic curve (AUROC) was com-
puted using the predicted probabilities and censored
survival data at a cutoff of t-years (survivalROC package).

We compared RESOLVED2 predictions to those that are
based on variables frequently used to estimate the success
of a phase I trial: clinical activity detected (yes/no), whether
complete responses are reported, and identification of DLT
or MTD reached. The so-called EffTox model was trained
using the same method and split rules as RESOLVED2,
without penalization.

To facilitate interpretability and applicability of RESOLVED2,
a binary classification model was computed from the pre-
viously computed scores. The main objective was to iden-
tify, and therefore prevent, the development of predicted
nonapproved drugs to improve the current important at-
trition rate in drug development (ie, drugs that will fail to be
approved after phase II/III trials). The training set was used
to identify the cutoff that maximized the difference in ob-
served FDA-aFS between predicted approved drugs and
predicted nonapproved drugs (corresponding to minimiz-
ing the log-rank–derived P value). FDA-aFS was described
using Kaplan-Meier curves and t-year event rate estima-
tions. Significance was defined as P , .05.

RESULTS

FDA-aFS of ANAs

On the basis of the Medical Subject Headings term search,
2,606 PubMed entries were identified as early clinical trials
that assessed ANAs (Data Supplement). Among these,
2,415 publication titles were found to quote one drug or
more (Fig 1). There were 619 compounds that matched to
551 DrugBank5.0 entries (Data Supplement). Sixty-eight
compounds derived from a parent compound were not
registered in DrugBank5.0 (ie, liposome-encapsulated
drugs, pegylated drugs, modified galenic forms) or were
prodrugs/compounds not used as therapeutic agents
(floxuridine for fluorouracil, exisulind for sulindac, ATP),
and 314 drugs did not match any DrugBank5.0 entry (Data
Supplement). Among the 551 DrugBank5.0 entries, 486
(88%) were developed initially as ANAs. For 24 drugs, the
earliest phase I trial publications were identified, but ab-
stracts were not available (Fig 1).

Finally, 462 drugs were selected for which the earliest
phase I trial dates of publication ranged from June 1972 to
October 2017, with 368 (80%) trials published after 2000.
On the basis of abstract text, most phase I trials included all
cancer types (68%) and mentioned a drug target (80%), at
least one DLT observed or MTD reached (77%), and
a clinical activity of efficacy (69%). Few abstracts men-
tioned a dose expansion cohort (16%) or a molecular
biomarker (9%; Table 1).

The median follow-up was 134 months (range, 1 to 425
months; Q1-Q3, 77-203 months). At 3 and 6 years of
follow-up, 13% (95% CI, 10% to 16%) and 20% (95% CI,
16% to 24%) of drugs have been approved, respectively.
Overall, we observed that 131 (28%; 95% CI, 24% to 32%)
of the 462 drugs obtained FDA approval. The nonapproved
drug with the shortest follow-up was depatuxizumab
mafodotin (10 months), whereas the longest was observed
for treosulfan (495 months).

Training of the Models to Predict FDA Approval

PubMed abstract data and DrugBank5.0 annotations
resulted in 1,411 binary variables. Ten drugs were removed
because of unavailable data for clinical activity or DLT
identified/MTD reached. The overall response rate was
not considered because of too much unavailable data
(Table 1).

The multivariable Cox model was penalized with the lasso
procedure, which thus facilitated feature selection by fil-
tering nonzero learned coefficients (Data Supplement).
Twenty-eight features were finally selected (Fig 2; Data
Supplement). Relevant treatment targets (PDGFRα1,
PD-L1, HDAC1), pharmacokinetic properties (CYP450 sub-
strates/modulators; P-glycoprotein ABCB1 substrates/
modulators), and drug categories (kinase inhibitors, pu-
rine analogs, antibodies, proteins) were among the best
predictors of FDA-aFS. Phase I trial results with complete
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response reported and trial designs such as tumor type
enrichment or selection, dose expansion cohort, and mo-
lecular biomarker (Fig 2) also were identified as important
features (see Data Supplement for DrugBank5.0 feature
definitions and drug annotations with model features).

The predictive score for FDA-aFS was used for classifica-
tion. The cutoff found in the training set that maximized the
FDA-aFS difference between predicted approved drugs
and predicted nonapproved drugs (Data Supplement;

Fig 3A) also was applied and evaluated in the independent
test set.

Generalization of Predicted FDA Approval on the Test Set

The predictions of RESOLVED2 were highly related with the
observed FDA-aFS of ANAs included in the previously
unseen test set. For the time-dependent scores, the non-
weighted C-index was 0.90, and the weighted C-index
(IPCW) was 0.89. Moreover, the AUROCs on the basis of

Abstract corpus selected
(N = 2,606)

Abstract titles
that quote one or more compounds

(n = 2,415)

Merge with DrugBank5.0
database

Compound
names, symbols, aliases identified

(n = 933)

Drugs developed as ANAs
(n = 486)

Drugs with
first ECT abstract available

(n = 462)

Abstract titles without mention
of any compound

 (n = 191)

DrugBank5.0 entries identified
(n = 551)

Compounds without match in
   DrugBank5.0 database
Compounds derived from parent
   compound without dedicated
   DrugBank5.0 entry
Compounds not used as
   therapeutic agents

(n = 314)

(n = 65)
 

(n = 3)

Drugs not developped initially as ANAs
(n = 65)

Drugs without first ECT abstract available
   Publications before 1985                 (n = 22)
   Aldesleukin (1989; PMID 2627984)
   Sorafenib (2002; PMID 12503822) 

FIG 1. Flow chart for drug selection. ANA,
antineoplastic agent; ECT, early clinical
trial.

Beinse et al
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Kaplan-Meier curves were 0.97 and 0.94 at 3 and 6 years,
respectively (Data Supplement).

As a comparison, performances of the EffTox model in the
test set (Data Supplement) were lower in terms of con-
cordance (C-index, 0.79; IPCW, 0.69) and in terms of
sensitivity and specificity (survival AUROCs were 0.76 and
0.84 at 3 and 6 years, respectively; Data Supplement).

The classifier version of RESOLVED2 predicted that 81% of
ANAs from the test set would be nonapproved. Predictions
were strongly related with observed FDA-aFS (Fig 3B). For
example, at 3 years of follow-up, 95% (95% CI, 91% to
99%) of predicted nonapproved drugs were not approved,
whereas 50% (95%CI, 27% to 66%) of predicted approved
drugs were indeed approved. For a later follow-up of
6 years, we found that 92% (95% CI, 87% to 98%) of
predicted nonapproved drugs were still not approved,

whereas 73% (95%CI, 49% to 86%) of predicted approved
drugs were indeed approved. A predicted approved drug
was 16 times more likely to be approved than a predicted
nonapproved drug (hazard ratio, 16.4; 95% CI, 8.40 to
32.2; P , .001). Proportional hazard assumption was
verified (cox.zph R function).

Applications of RESOLVED2

We applied RESOLVED2 on recent examples of early drug
development (Table 2; Data Supplement). Rovalpituzumab
tesirine is a bispecific antibody developed for a hard-to-treat
cancer type, namely small-cell lung cancer. Epacadostat is
an indoleamine 2,3-dioxygenase 1 inhibitor developed in
combination with immune checkpoint blockers for mela-
noma. On the basis of available data from single-agents
publications (epacadostat being not yet indexed in Drug-
Bank5.0), RESOLVED2 found that rovalpituzumab tesirine
had a probability of FDA approval within 6 years of 73%,
whereas epacadostat had a 92% risk of nonapproval. Only
longer follow-up will confirm or not these predictions. We
also applied RESOLVED2 predictions for treatments with
relatively complex development and finally approved
(Table 2). Of note, four of five treatments were indeed
predicted approved, and the one missed by RESOLVED2
had nevertheless a relatively high score. Several false-
positives of the classifier should be mentioned (14 drugs
predicted nonapproved but finally approved among 109
predicted nonapproved drugs in the test set); however,
scores of these 14 drugs were also relatively high, close to
the classifier threshold (Data Supplement).

DISCUSSION

Given the limited success rate of recent ANA development
in oncology, the improvement of an early go/no-go deci-
sion after a phase I clinical trial is a timely challenge.
RESOLVED2 used the earliest phase I PubMed abstracts
and simple pharmacologic characteristics to predict the
likelihood of FDA approval for individual ANAs. When
RESOLVED2 was used for classification, it was highly
correlated with time to approval in the independent eval-
uation test set; within the first 6 years of follow-up,
RESOLVED2 predictions were correct for 73% of approved
drugs and for 92% of nonapproved drugs. RESOLVED2
potentially could reduce by 81% the number of ANAs
undergoing further development and that would fail to
achieve FDA approval.

Features included in the RESOLVED2 model supported its
external validity. For instance, we found that targeting the
immune checkpoint inhibitor programmed cell death-ligand
1 was associated with successful development.21,22 The
model also included drug characteristics related to anti-
bodies, such as complement C1q subcomponent subunit A
target, antibodies, and proteins, or related to targeted
therapies, such as kinase inhibitors and known targets
(platelet-derived growth factor receptor α-1, histone
deacetylase 1). Trial designs also played an important role

TABLE 1. ECT Data Extracted From Abstracts
Feature (No. of ECTs with available data) No. (%)

Median (Q1-Q3) No. of patients included (440) 32 (22-51)

Date of publication (462)

Before 1989 24 (5)

1989-1993 21 (5)

1994-1998 40 (9)

1999-2003 77 (17)

2004-2008 92 (20)

2009-2012 105 (23)

2013-2017 103 (22)

ECT that enrolled all tumor types (462) 312 (68)

ECT enriched in a particular tumor type (462) 187 (40)

Drug target mentioned in ECT abstract (462) 370 (80)

Healthy volunteers included (462) 7 (1.5)

Dose expansion cohort (462) 76 (16)

Median (Q1-Q3) No. patients included in expansion cohort (76) 26 (15-37)

Molecular biomarkers considered (462) 43 (9)

Pathologic biomarkers considered (462) 28 (6)

Circulating biomarkers considered (462) 9 (2)

Clinical antitumor activity mentioned (456) 315 (69)

DLT identified or MTD reached (458) 354 (77)

Median (Q1-Q3) best objective response rate reported (356) 5 (0-20)

Complete response reported (456) 74 (16)

Grade V* TRAE reported (462) 13 (3)

Cardiac† TRAE reported (462) 41 (9)

Neuropsychological† TRAE reported (462) 34 (7)

NOTE. For feature definitions, see Data Supplement.
Abbreviations: DLT, dose-limiting toxicity; ECT, early clinical trial; MTD,

maximum tolerated dose; Q1-Q3, interquartile range; TRAE, treatment-related
adverse event.
*According to the Common Terminology Criteria for Adverse Events (version 4.0).
†Defined as any cardiac, neurologic, or psychiatric condition mentioned as

a TRAE in the abstract.
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in RESOLVED2 predictions, such as the use of molecular
biomarkers, cohort enrichment with specific tumor types,
and a dose expansion cohort. These findings are consistent
with the positive impact of biomarker-based strategies in
oncology10 along with the rise of precision medicine both in
clinics23,24 and in the drug development landscape.1,25

Features that describe cytotoxic chemotherapy targets or
categories also were found as predictive of drug approval,
such as purine analogs and DNA interacting agents.
Overall, RESOLVED2 used features that describe thera-
peutic breakthroughs, which could suggest that the de-
velopment of innovative drugs should be preferred to
development of me-too drugs.

Some limitations should be stressed. With regard to the data
used, among 619 ANAs retrieved in PubMed, 314 were not
recorded in DrugBank5.0. The approval rate in our cohort
was 28%, which was higher than the 5% likelihood of
approval reported elsewhere.3 This could be explained by
the selection of compounds reported in both the PubMed
and the DrugBank5.0 databases. A publication bias also
could have influence our model (ie, delayed phase I
publication that reports a promising drug; restriction to
English-written abstracts). To date, RESOLVED2 provides

a probability of approval for compounds given as mono-
therapy. Predicting approval for treatment combinations is
a current challenge that would require dedicated data and/
or a flexible modeling approach that can be derived from
RESOLVED2.

As reported in 2018, FDA approval regulations evolve
quickly26 to improve the balance between enhanced drug
access and patient safety.27,28 The Cox model assumes that
the strength of predictors is constant over time. Because it
has been trained on data from a long time interval (1972 to
2017), RESOLVED2 predictions may have been influenced
by approval rules evolution. Despite that the good perfor-
mance of RESOLVED2 was confirmed on an independent
test set with a similar time distribution, it would benefit
from future independent prospective validation. Another
assumption of the Cox model is that events are in-
dependent: Here, drug A approval could have influenced
drug B approval. Nevertheless, the strength of such de-
pendencies is arguable. For example, me-too drugs are
approved equivalently for the treatment of tumor types such
as kidney cancer (four anti-angiogenic ANAs), BRAF-
mutated melanomas (two BRAF inhibitors), and EGFR-
mutated lung adenocarcinomas (six small molecules)

Targets complement C1q subcomponent subunit A
Transferases

Targets programmed cell death 1-ligand 1
Kinase inhibitor

Hypotensive agents
Targets platelet-derived growth factor receptor -1

Cytochrome P450 CYP2C8 substrates
P-glycoprotein ABCB1 substrates

Purine analogs
Cytochrome P450 CYP2C9 substrates
Cytochrome P450 CYP3A4 substrates

Miscellaneous skin and mucous membrane agents
Cytochrome P450 enzyme inhibitors

Targets histone deacetylase 1
Complete response reported

Tumor type enrichment or selection
Targets DNA

Dose expansion cohort
P-glycoprotein ABCB1 inhibitors
Nucleic acid synthesis inhibitors

Antibodies
Proteins

Cytochrome P450 CYP2D6 inhibitors  weak
Cytochrome P450 CYP3A inducers

BCRP ABCG2 inhibitors
Biomarker molecular considered

Targets low-affinity immunoglobulin -Fc region receptor II b
Targets DNA polymerase -catalytic subunit

0.0 0.5 1.0 1.5 2.0

-Coefficient

Dr
ug

 F
ea

tu
re

FIG 2. RESOLVED2 model. β-Coefficients from lasso-penalized Cox model. For feature definitions, see the Data Supplement. The best lasso penalization
parameter (λmin-value) was determined using a 100-fold cross-validated Cox regression model on the training set (Data Supplement). Evolution of penalized
β-coefficients with λ-values are depicted in the Data Supplement. A Cox regression model L1 (lasso) penalized with the λmin-value identified by cross-
validation (6.59.10−2) was fit to allow feature selection and associated β-coefficient computation.
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(https://www.nccn.org/professionals/physician_gls/default.
aspx29,29a). On the other hand, me-too drugs also can fail to
obtain approval because of poor activity or safety. For
example, panitumumab has failed approval in head and
neck cancers, whereas cetuximab is a long-standing
standard of care.30 To evaluate the added value of
RESOLVED2 compared with the current approach, we
designed EffTox as a proxy on the basis of variables most
frequently used to estimate the success of a phase I trial
when limited information on a drug is available. Despite that
the final approval decision is highly contextual and uses
more information, standardized decisions in this context

are becomingmore frequent.31,32 A basic approach such as
EffTox and an advanced approach such as RESOLVED2
could be applied to support decisions in this context.

Using a model for censored data to predict drug approval is
new, accounts for heterogeneity in follow-up, and maxi-
mizes the amount of data used, including recent examples.
The lasso-penalized Cox model offers the advantage of only
one hyperparameter to train, which is valuable in the
context of a limited number of examples. Moreover, it fa-
cilitates the interpretation of the model by automated
feature selection and generation of hazard ratios per fea-
ture, which is valuable compared with ensemble modeling

TABLE 2. Applications of RESOLVED2: Examples

Drug
Corresponding

DrugBank5.0 Entry PMID
Granted FDA
Approval Date of Approval

Delay (in months) From
Date of Early Phase I CT

to FDA Approval or
Censoring
(July 2018)

RESOLVED2
Score

RESOLVED2 Binary
Prediction

Cabazitaxel Cabazitaxel 19147780 Yes June 17, 2010 17.4 13.138 Predicted approved

Abiraterone Abiraterone 15150570 Yes April 28, 2011 82.7 4.170 Predicted nonapproved

Cabozantinib Cabozantinib 21606412 Yes November 29, 2012 17.0 31.834 Predicted approved

Palbociclib Palbociclib 21610706 Yes February 3, 2015 91.9 19.822 Predicted approved

Olaratumab Olaratumab 24452395 Yes October 19, 2016 33.5 5.556 Predicted approved

Rovalpituzumab
tesirine

Rovalpituzumab
tesirine

27932068 No NA 18.9 15.671 Predicted approved

Epacadostat Not indexed 28053021 No NA 12.9 1.000 Predicted nonapproved

Abbreviations: CT, clinical trial; FDA, US Food and Drug Administration; NA, not applicable; PMID, PubMed identifier.

P < .001
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FIG 3. US Food and Drug Administration approval-free survival (FDA-aFS). Kaplan-Meier curves of FDA-aFS. (A) FDA-aFS according to the RESOLVED2
classification in the training set. Predicted approved and nonapproved antineoplastic agents refer to binary predictions performed using the RESOLVED2
classifier on the basis of RESOLVED2 scores. In this plot, the training set was split using the optimal cutoff calibrated on a minimal log-rank derived P value
(see Methods section). (B) FDA-aFS according to the RESOLVED2 classification in the test set. The test set was split using the optimal cutoff in RESOLVED2
scores identified in the training set (see Methods section).
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technics or neural networks, for example.33 With regard to
the choice of data, numerous drug databases with various
topics and aims are available34,35; DrugBank5.0 had the
advantage to provide qualitative, accurate, and manually
curated annotations on pharmacologic properties and drug
targets.13

In conclusion, the seminal RESOLVED2 experience
showed that machine learning models could efficiently
support early go/no-go decisions before phase II/III
trials.36,37 Such models could improve the current land-
scape of drug development for patients, academic centers,
and the pharmaceutical industry.

AFFILIATIONS
1Gustave Roussy Cancer Campus, Villejuif, France
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