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A B S T R A C T

Objectives: After a successful Marketing Authorization Application for clinical trials with time-to-event endpoints, the degree
of the added benefit from new treatments remains unknown and needs to be assessed. Unfortunately, until now no clear
definition for added benefit determination of a treatment exists. Nevertheless, European authorities / societies have
developed 2 “additional benefit assessment” methods, which have up to now not been compared: the European Society
for Medical Oncology (ESMO) developed a dual rule considering relative and absolute benefit. The German Institute for
Quality and Efficiency in Health Care (IQWiG) developed a method using upper 95% hazard ratio confidence interval.

Methods:We evaluate and compare both methods in an extensive simulation study including different censoring rates, failure
time distributions, and treatment effects for sample size calculation. The methods’ performance is assessed via Receiver
Operating Characteristic curves, Spearman correlation, and percentage of achieved maximal scores.

Results: The results show that IQWiG’s method has in many situations a lower maximal scoring proportion than ESMO’s rule,
that is, up to 28.5% versus 94.7%. Various failure time distributions lead to strongly changed maximal scoring percentages for
ESMO. High positive correlation between the methods is present for moderate treatment effects.

Conclusions: IQWiG’s method is usually more conservative than ESMO’s. ESMO’s rule tends to be more susceptible for various
failure time distributions. Using the lower confidence interval limit seems to be a better solution resulting in a higher true-
positive rate without increasing the false-positive rate. Thus, IQWiG’s method might need to be adapted accordingly to
achieve a better overall classification.
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Introduction

Pharmaceutical companies search for new drugs against spe-
cific diseases, for example cancer, which have to be investigated
with respect to their quality, safety, and efficacy, preventing a
nonbeneficial drug to get on the market. Most efficacy endpoints
in cancer trials are time-to-event endpoints such as overall sur-
vival or progression-free survival. Therefore, a statistically signif-
icant log-rank test result is usually one of many requirements for
submission of a Marketing Authorization Application to an
appropriate authority, which decides whether the drug is allowed
to enter the market. Nevertheless, the degree of the added benefit
from new and effective treatments with time-to-event endpoints
derived from clinical trials remains unknown at this stage and
needs to be assessed. Unfortunately, until now no clear definition
and hence no gold-standard for added benefit determination of a
treatment exists. However, European authorities/societies have
15/$36.00 - see front matter Copyright ª 2022, International Society for Ph
developed 2 different benefit assessment scores for time-to-event
endpoints.

In Germany, the Federal Joint Committee defines the additional
benefit of new drugs, which forms the basis of negotiations on the
reimbursement price. For its decision, it commissions the Institute
for Quality and Efficiency in Health Care (IQWiG) to evaluate the
additional benefit of new drugs. Thus, the classification takes an
important role in how much a new treatment is worth in
economical terms. When evaluating time-to-event endpoints, the
IQWiG makes use of the upper limit of the 95% hazard ratio (HR)
confidence interval (CI), which is compared with specific thresh-
olds categorizing the new treatment into 3 categories: major,
considerable, and minor added benefit1 (Fig. 1). The resulting
categories can afterward still be adjusted to reflect other impor-
tant endpoints such as toxicity and quality of life of the new
treatment. Furthermore, the utilized thresholds were calculated
assuming binomially distributed data using the relative risk (RR);
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Figure 1. Detailed illustration of ESMO’s, IQWiG’s and modified IQWiG’s clinical additional benefit assessment methods for overall
survival / time-to-event endpoints.
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ESMO indicates European Society for Medical Oncology; gain, absolute difference in median survival times (in months); HR, hazard ratio; HR1, estimated upper 95%
confidence interval limit of the hazard ratio; HR2, estimated lower 95% confidence interval limit of the hazard ratio; IQWiG, Institute for Quality and Efficiency in Health
Care; IQWiG’s, IQWiG’s method using relative risk scaled thresholds; Mod-IQWiG’sHR, modified IQWiG method using upper confidence interval limit based on IQWiG’s
thresholds (transformation into HR-scaled thresholds using the conversion formula proposed by VanderWeele2); medC, estimated median survival time in the control
group (in months); QoL, quality of life; RR, relative risk.
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ie, a true RR of 0.5 was defined as an effect of “major” extent for
the outcome all-cause mortality.1 These RR-scaled thresholds are
also used for time-to-event data, which are frequently present in
oncology trials. To investigate the possible influence of differently
scaled thresholds on the grading of added benefit for new treat-
ments, we transformed the provided RR-scaled thresholds into
HR-scaled thresholds using the conversion formula proposed by
VanderWeele.2

On a European level, the European Society for Medical
Oncology (ESMO) has developed the Magnitude of Clinical Benefit
Scale version 1.1 using a dual rule to compute a preliminary scale.
The dual rule consists of the relative and absolute benefit achieved
by the new treatment compared to specific thresholds categoriz-
ing new drugs into 4 categories. The relative and absolute benefit
are assessed by the lower limit of the 95% HR-CI (HR2), and the
observed absolute difference in median survival times (gain),
respectively. These thresholds vary based on the observed median
survival times in the control group (medC); for example, if gain
, 1.5 months (and HR2 . 0.7) for medC # 24 or gain , 4 (and
HR2 . 0.7) for medC . 24, only category 1 can be achieved (Fig. 1,
column “1 (low benefit)”). Additionally, a maximum preliminary
category can be achieved if the survival rate increases by 10% or
more at key milestones. After the rating of the dual rule, the
resulting preliminary scale can be adjusted to reflect the toxicity
and quality of life of the new treatment. Therefore, ESMO’s
method in the non-curative setting with overall survival as pri-
mary endpoint classifies new treatments into 5 clinical benefit
categories (Fig. 1), where grades 5 and 4 represent substantial and
grades 3 to 1 low benefit.3,4 ESMO’s classification has a more in-
direct influence on the treatments price, meaning that “drugs,
which obtain the highest scores on the scale, will be emphasized
in the ESMO guidelines, with the hope that they will be rapidly
endorsed by health authorities across the European Union.”3

All measures used by both methods are calculated from the
trials of the new medication. Additionally, in both scientific pub-
lications of these 2 methods,1,3,4 it is stated that the upper/lower
limit of the CI takes the variability of the estimate into account and
hence should provide more information than the point estimate
(PE). Moreover, Skipka et al1 indicate that the PE might be biased
for trials that were discontinued at a preplanned interim analysis.
Nevertheless, as mentioned in 2 letters to the editor,5,6 the use of
the lower CI limit could lead to a higher probability of a better
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grade because it may reward studies with a smaller sample size
and, hence, a wider CI. This issue in ESMO’s method has been
addressed by inclusion of the required absolute benefit
thresholds.3,4

Until now, only the usage of the lower CI limit compared with
the PE was performed,7 whereas a comparison of the 2 above
mentioned methods, to understand the differences between the
benefit assessment rules, has not been performed. Especially the
question on which fundamental statistical idea (upper vs lower CI
limit) might be better for determination of additional added
benefit needs to be verified so that new drugs are fairly classified.
This article tries to eliminate this knowledge gap and creates a
systematic and detailed overview of the differences between the
statistical parts of the assessment methods.
Methods

An extensive simulation study was performed by generating
different scenarios of phase III trials to provide the aspired
detailed overview between the 2 methods. The data generation
was performed by standard time-to-event data mechanism: Fail-
ure and censoring times were generated nobs times, and the
minimum of both values was used as event time for the analysis.
The sample size nobs for each simulated trial was derived using
Schoenfeld’s approach8,9 to ensure a specific power for a two-
sided log-rank test at a significance level of 5% for the treatment
effect designHR. Three different distributions with proportional
hazards were used for failure time generation: exponential, Wei-
bull, and Gompertz. During data generation, a fixed value for the
median survival time in the control group (medC) and the treat-
ment effect (trueHR) were used to derive the required parameters
of the failure time distributions. In order to assess both over-
powered and underpowered studies with incorrect assumed
treatment effects, the factor HRvar was defined for deviance be-
tween designHR and trueHR (trueHR = designHR$HRvar). To ach-
ieve proportional hazards for Weibull and Gompertz distributions,
the shape parameter of each of the distributions was fixed to 2
different values causing the hazard function to increase/decrease
over time.

Overall, the following scenarios were used, where each sub-
scenario was generated 10 000 times:

1. Standard scenario (scenario 1): exponentially distributed failure
times using designHR ˛ {0.3, 0.32, ., 0.9}, designHR = trueHR,
medC ˛ {6, 12, 18, 24, 30 months}, power of 80% and 90%;
leading to (31$5$2$3=) 930 subscenarios. The fixed parame-
ters medC, designHR, and trueHR (HR$HRvar) were used to
calculate the required parameters lC and lT of the exponential
distribution (see Appendix in Supplemental Materials found
at https://doi.org/10.1016/j.jval.2022.05.015 for further
information).

2. Incorrect assumed treatment effect (scenario 2): Overpowered/
underpowered studies using the same parameters as scenario
1; except designHR s trueHR using HRvar ˛ {0.8, 0.9, 1.1, 1.2};
leading to (31$5$2$3$4=) 3720 subscenarios.

3. Two different parameter distributions (scenario 3): Same
parameters as scenario 1, except using different failure time
distributions in compliance with proportional hazards.
� Scenario 3a: Weibull distributions using shape ˛ {0.5, 1.5};

leading to (31$5$2$3$2=) 1860 subscenarios
� Scenario 3b: Gompertz distributions using shape ˛ {-0.2,

0.2}; leading to (31$5$2$3$2=) 1860 subscenarios
4. Non-proportional hazards/non-constant HR (scenario 4): Delayed
treatment effect for the treatment group using piece-wise
exponential failure time distributions; leading to
(31$5$2$3=) 930 subscenarios. To achieve a late treatment
effect for the treatment group, a piece-wise exponential dis-
tribution was chosen:

FCðxÞ ¼ 12expð2lC$xÞ;

FT ðxÞ¼
�
12expð2lC,xÞ ; x˛½0; startT �
12expð2lC,startT,expð2lT,ðx2startT ÞÞ ; otherwise

where FC and FT are the cumulative distribution functions of the
treatment and control group, lC . 0 and lT . 0 are the parameters
of the corresponding exponential distributions, and startT
(= 1

3$medC) is the time point of treatment effect start for the
treatment group. The failure times of the treatment groups were
generated using the inversion method by Kolonko (chapter 8).10

Hence, proportional hazards were assumed before and after
startT. Additionally, lC and lT were defined the same way as in the
standard scenario 1 (see Appendix in Supplemental Materials
found at https://doi.org/10.1016/j.jval.2022.05.015 for further
information).

In every scenario, a combination of administrative censoring
(accrual time of 2 years and follow-up time of 2$medC) and
exponential censoring was used, aiming for an overall censoring
rate of at least 20%, 40%, or 60%. The Appendix in Supplemental
Materials found at https://doi.org/10.1016/j.jval.2022.05.015 gives
further information about the data generation mechanism.

Each simulated trial was analyzed using a log-rank test, and if
significant, IQWiG’s and ESMO’s methods were applied. Therefore,
HR-PEs with corresponding 95% Wald-CIs using Cox regressions,
gain, and the 2-, 3-, and 5-year survival increase were calculated
(Fig. 1). In rare cases of subscenarios with large treatment effects,
the survival curve did not fall below 50% and thus medC or medT
could not be calculated. To overcome this issue, a conservative
approach was implemented, using instead the last present time
point (event or censoring) in the survival curve. Moreover, to
investigate the potential influence of wrongly RR-scaled thresh-
olds of IQWiG’s method (IQWiG), the provided RR-scaled thresh-
olds were transformed into HR-scaled thresholds (Mod-IQWiGHR)
using the conversion formula by VanderWeele2 (Fig. 1):

RR¼ 120:5
ffiffiffiffiffi
HR

p

120:5
ffiffiffiffiffiffiffiffi
1=HR

p

Given that this formula has no analytical solution for HR, we used
a numerical approach (optimization) to calculate the HR-scaled
thresholds.

In an attempt to achieve a fair comparison, some assumptions
needed to be made. Given that this simulation study aims to
compare the statistical aspects of the methods in an overall sur-
vival setting, ESMO’s score 5 was not used because it can only be
achieved with additional bonus points adjustments, for example,
toxicity improvements. Therefore, ESMO’s preliminary scale
ranging from 1 to 4 was used, and thus, the maximal scores of
both methods are comparable (major added benefit z substantial
improvement).

The proportion of simulated trials that achieved maximal score
was used as the main metric of comparison. Furthermore, ROC
curves were generated comparing different thresholds (ranging

https://doi.org/10.1016/j.jval.2022.05.015
https://doi.org/10.1016/j.jval.2022.05.015
https://doi.org/10.1016/j.jval.2022.05.015


Figure 2. Pairwise Spearman correlation between ESMO’s dual rule und IQWiG’s additional benefit assessment methods. Illustrated
using line charts of the standard scenario (designHR = trueHR) with different underlying median survival times for the control group (6,
12, 18, 24 and 30 months), designHRs (0.3 to 0.9), censoring rates (20% and 60%), and power of 90%. In scenarios with very large
treatment effects, only the same score was assigned; therefore, some correlations could not be calculated and, hence, are missing (eg,
bottom right panel).

designHR indicates design hazard ratio, used for sample size calculation; trueHR, true underlying hazard ratio for data generation.
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from 0.2 to 1) as definition of maximal additional benefit classi-
fication for the HR-PE, as well as for HR2 and HR1 after a statis-
tically significant trial (HR-PE). For each of these thresholds, all
simulated subscenarios with designHR ranging from 0.3 to 0.9
were used for calculating the True-Positive Rate (TPR) and False-
Positive Rate (FPR). In this context, a true-positive event means
that a treatment is deservedly classified as maximal score by the
additional benefit assessment method, whereas a false-positive
event denotes that a treatment is not deservedly classified as
maximal score by the additional benefit assessment method. To
calculate TPR and FPR, a ground truth was needed, and since there
is no gold-standard method available, a maximal score was
assumed to be justified if trueHR , ddeserved for different cutoffs
values of ddeserved (0.5, 0.6, 0.7, and 0.8). For the assessment of the
correspondence between the 2 methods, pairwise Spearman
correlation was calculated using the interpretation provided by
Mukaka as a third metric for comparison,11,12 examining the
complete range of categories for the 2 methods.

The simulation study was performed using the software R13

version 4.0.0, with packages “ggplot,”14 “survival,”15,16 and “flex-
surv”17 (R-Code and additional information including ADEMP
structure proposed by Morris et al18 available at github.com/
cbuesch/IQWiGvsESMO).
Results

In the standard scenario, ESMO’s and IQWiG’s methods show
low to high positive correlation (Fig. 2). Overall, smaller censoring
and decreasing underlying treatment effect (designHR) lead to
stronger correlation between ESMO’s and IQWiG’s method; for
example, in case of medC = 12 months (Fig. 2, second panel),
censoring rates of 20% and 60% lead to an on average correlation of
0.30 and 0.20, respectively. Nevertheless, the correlation peaks at
“moderate” treatment effects to approximately 0.75, for example,
designHR = 0.78, top left panel with 20% censoring rate. Figure 3,
which illustrates the proportion of maximal scores of each method
including Mod-IQWiG’sHR, IQWiG’s and ESMO’s relative benefit
rule, and ESMO’s full method, explains that, at these values for
designHR, the high positive correlation is due to the similar
maximal scoring proportions. Furthermore, Figure 3 shows that
ESMO’s method has a higher proportion of maximal scores
(almost all being maximal) for large treatment effects (low values
of designHR), which is the reason for the lack of correlation. For
smaller treatment effects (large designHRs), IQWiG’s method ap-
pears to have a higher proportion (Fig. 3, dark-green above violet
line; designHR z 0.74 or larger in left panel with 20% censoring
rate) with an overall maximal scoring proportion being small, and
hence, the value of the designHR, where IQWiG’s intersects with
ESMO (Fig. 3), is the same designHR where the correlation reaches
its maximum (Fig. 2). This designHR changes with the underlying
medC of the trial. In other words, the higher the medC of the study,
the smaller the treatment effect has to be for the ESMO method to
be more conservative than the IQWiG’s method.

The assumed medC only slightly influences the correlation
pattern. The main difference can be seen in medC equal to 6
months versus the other scenarios (Fig. 2, left panel vs other
panels). In this subscenario, the correlation curve tends to sub-
stantially increase earlier than in scenarios with medC . 6
months. In cases of large treatment effects, the correlation was not
always computable because one of the methods always assigned
the same rating (see trueHR , 0.54 top right panel).

Figure 3 further illustrates that, with the implementation of
the absolute benefit rule, ESMO’s dual rule achieves a reduction,
for example, 83.1% to 55.2% in the scenario with designHR of 0.78
(Fig. 3; censoring rate 40%, medC = 12). Nevertheless, this



Figure 3. Proportion of maximal scores of all significant trials for Mod-IQWiG’sHR (light-green) IQWiG’s (dark-green), ESMO’s relative
benefit rule (blue), and ESMO’s dual rule (violet). Illustrated using line charts for different subscenarios of the standard scenario 1
(designHR = trueHR) with different underlying median survival times for the control group (6, 12, 18, 24, and 30 months), designHRs (0.3-
0.9), censoring rates (20% and 60%), and power of 90%.

designHR indicates design hazard ratio, used for sample size calculation; ESMO, European Society for Medical Oncology; ESMORB, ESMO’s method using only the relative
benefit rule; IQWiG, Institute for Quality and Efficiency in Health Care; IQWiG’s, IQWiG’s method using relative risk scaled thresholds; Mod-IQWiG’sHR, modified IQWiG
method using upper confidence interval limit based on IQWiG’s thresholds (transformation into HR-scaled thresholds using the conversion formula proposed by
VanderWeele2); trueHR, true underlying hazard ratio for data generation.
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reduction occurring for the absolute benefit rule is less pro-
nounced in scenarios with higher censoring rates (violet above or
equal to blue line). IQWiG’s rule and Mod-IQWiG’sHR rule tend to
be more conservative in comparison to ESMO’s method in many
scenarios. Overall, in scenarios with large effects, ESMO’s dual rule
shows liberal results as it assigns higher scores than IQWIG’s
approach. For example, a maximal score rating proportion of 42.5%
is given by IQWiG’s rule compared with 78.6% of ESMO’s dual rule
(Fig. 3; designHR = 0.72, censoring rate 20%, medC = 12).
Conversely, Mod-IQWiG’sHR is more conservative than all other
methods, showing the lowest proportion of maximal scores over
all scenarios.

Moreover, only ESMO’s method changes with different
assumed medC whereas IQWiG’s method does not depend on
medC (Fig. 1). Therefore, IQWiG’s and Mod-IQWiG’sHR rule stay
similar in each row of Figures 2 and 3. Furthermore, in sub-
scenarios with larger simulated censoring rates all methods ach-
ieve a higher proportion of maximal scores (Fig. 3, squares above
triangles above circles). Nonetheless, ESMO’s dual rule does not
increase further because it already achieves 100% with small
censoring rates.

To answer the question on which fundamental statistical idea
(upper vs lower CI limit) might be better for determination of
added benefit, ROC curves of the standard scenario were gener-
ated. Figure 4 illustrates subscenarios with medC of 12 months and
censoring rate of 20% (first row) and 60% (second row). Focusing
only on the CI limits after a statistically significant trial, the lower
CI limit (HR2, blue curve) always lies closer to the perfect classifier
(point in the top left corner with coordinates (0,1)) and hence
provides a better solution, if appropriate thresholds are chosen.
This means that using HR2 with a threshold close to 1 leads to a
large TPR as well as FPR and hence is not close to the perfect
classifier. Nevertheless, a threshold of 0.43 provides TPR and FPR
closer to the perfect classifier over a range of different ddeserved
values (Fig. 4; FPR = 0.2229, TPR = 0.9990 for ddeserved = 0.5 and
20% censoring; FPR = 0.0002, TPR = 0.7345 for ddeserved = 0.7 and
20% censoring). Furthermore, even using the HR-PE (yellow curve)
provides a better ROC curve than using HR1 (black curve). If the
particular methods by ESMO and IQWiG are compared (triangles),
IQWiG’s methods always shows a lower FPR and can thus again, as
for Figure 3, be interpreted as the more conservative method.
ESMO’s dual rule also shows very high FPRs, which can be seen as
too liberal. Nevertheless, TPR is lower for IQWiG’s method than
ESMO’s dual rule. All other methods (ESMORB, ESMO, IQWiG’s)
have a higher FPR and hence are more liberal than Mod-IQWiG’sHR
method. It also can be seen that the results for 20% and 60%
censoring rates are very similar. Hence, the censoring rate does
not influence the above-described behaviors, if this aspect is
included in the sample size calculation.

The results for simulations with incorrect assumed treatment
effects for sample size calculation (scenario 2) are illustrated in
bar charts of maximal score proportions in Figure 5. The first row
shows results for subscenarios with underestimated treatment
effects (overpowered trials), the second row shows results for
subscenarios with correct assumed treatment effects (standard
scenario 1), and the last 2 rows show results for overestimated
treatment effects (underpowered trials). It can again be seen that
ESMO’s dual rule often has a reduced proportion of maximal score
compared with the ESMO`sRB rule (violet vs blue). As analogously
shown by Figure 3, this is due to the sign of an achieved reduction
by the implementation of the absolute benefit rule. In under-
powered trials with large treatment effects (designHR , 0.8),
Mod-IQWiG’sHR and IQWiG’s show a larger reduction of the
maximal score proportions than ESMO’s dual rule compared



Figure 4. ROC curves comparing different thresholds (ranging from 0.2 to 1) as definition of maximal additional benefit classification for
the HR point estimate (yellow line) as well as for HR2 (blue line) and HR1 (black line). For each of these thresholds, all simulated
subscenarios with designHR ranging from 0.3 to 0.9 were used for TPR and FPR calculation. A true-positive event means that a treatment
is deservedly classified as maximal score by the additional benefit assessment method, whereas a false-positive event denotes that a
treatment is not deservedly classified as maximal score by the additional benefit assessment method. A maximal score is assumed to be
justified if trueHR , ddeserved holds for different cutoffs values of ddeserved (0.5, 0.6, 0.7, and 0.8). In addition, ESMO’s dual rule (violet),
ESMO’sRB rule (blue), Mod- IQWiG’sHR (light-green), and IQWIG’s (dark-green) method are illustrated with triangles.

designHR indicates design hazard ratio, used for sample size calculation; ESMO, European Society for Medical Oncology; ESMORB, ESMO’s method using only the relative
benefit rule; HR, hazard ratio; HR1, estimated upper 95% confidence interval limit of the hazard ratio; HR2, estimated lower 95% confidence interval limit of the hazard
ratio; IQWiG, Institute for Quality and Efficiency in Health Care; IQWiG’s, IQWiG’s method using hazard ratio scaled thresholds; Mod-IQWiG’sHR, modified IQWiG method
using upper confidence interval limit based on IQWiG’s thresholds (transformation into HR-scaled thresholds using the conversion formula proposed by VanderWeele2);
ROC, receiver operating characteristic; trueHR, true underlying hazard ratio for data generation.
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with the standard scenario. For example, in scenarios with
designHR = 0.7, HRvar = 1.1 and censoring rate of 60%, ESMO’s dual
rule and IQWiG’s exhibit a reduction of 4.1% (98.7%-94.6%) and
31.9% (63.0%-31.1%), respectively. For small treatment effects, all
methods achieve similar results. On the contrary, in overpowered
trials all methods show an increased maximal score proportion.
Especially for IQWiG’s rule in subscenarios with small treatment
effects (HRvar = 0.9 and designHR = 0.9), the highest increased
proportion compared to the standard scenario can be observed
and is thus the most liberal one, for example, 69.8% (69.9%-0.1%)
inflation in the 60% censoring scenarios. Mod-IQWiG’sHR rule, in
contrast, is the most conservative method in this subscenario with
proportions still very close to 0%. In overpowered scenarios with
larger treatment effects, the methods achieve rather similar re-
sults as ESMO’s dual rule already achieves a maximal scoring
proportion of 100% in the standard scenario (middle row) and,
hence, cannot further increase. The differences between ESMO’s
and IQWiG’s method are due to 2 reasons. First, ESMO’s method
additionally incorporates the absolute benefit rule, whose reduc-
tion impact in case of underpowered studies is not as large
anymore as for correctly powered studies. Second, as illustrated by
Figure 3, IQWiG’s threshold choice for the HR1 cutoff point for
maximal scores is chosen more conservatively than ESMO’s
threshold choice for the HR2 (violet vs blue). Note that, for a HRvar

of 0.8, results were barely affected by variation in the other pa-
rameters, being usually 100% for the ESMO methods and 80% to
100% for IQWiG’s and Mod-IQWiG’sHR methods.
The impact of various distributions (scenario 3) and non-pro-
portional hazards / non-constant HRs (scenario 4) are illustrated
in Figure 6, which shows the proportion of maximal scores.
IQWiG’s approach using HR1 (green lines) shows very similar
results for Weibull and Gompertz distribution compared to the
standard scenario (left panel). Contrarily, ESMO’s reduction due to
the absolute benefit rule either drastically decreases the score in
cases of increasing hazards (Gompertz, shape of 0.2; Weibull,
shape of 1.5) or even slightly increases it in cases of decreasing
hazards (Gompertz, shape of 20.2; Weibull, shape of 0.5). Hence,
this method is very susceptible to the underlying distribution. In
cases with delayed treatment effects and thus non-proportional
hazards / non-constant HR, ESMO’s method shows only slightly
reduced scores compared to proportional hazards. Contrarily,
IQWiG’s method reduces the maximal scoring proportion by
almost 20%, which may be due to combination of penalization for
non-proportional hazards and a weaker overall treatment effect in
these scenarios.

Furthermore, scenarioswith lesspoweredstudies, that is, 80%, and
censoring rate of 40% show similar results as described earlier.
Discussion

The performed simulation study provides valuable insight into
the differences between the benefit assessment scales for time-to-
event outcomes of ESMO’s and IQWiG’s approach. The results for



Figure 5. Proportion of maximal scores of all significant trials for Mod-IQWiG’sHR (light-green) IQWiG’s (dark-green), ESMO’s relative
benefit rule (blue), and ESMO’s dual rule (violet). Illustrated using bar charts for different subscenarios of scenario 2 (designHRs trueHR)
with a median survival time for the control group of 12 months, designHRs (0.3, 0.5, 0.7, and 0.9), censoring rates (20% and 60%) and
power of 90%.

designHR indicates design hazard ratio, used for sample size calculation; ESMO, European Society for Medical Oncology; ESMORB, ESMO’s method using only the relative
benefit rule; HR1, estimated upper 95% confidence interval limit of the hazard ratio; HR2, estimated lower 95% confidence interval limit of the hazard ratio; HRvar, factor
for deviance between designHR and trueHR; IQWiG, Institute for Quality and Efficiency in Health Care; IQWiG’s, IQWiG’s method using hazard ratio scaled thresholds;
Mod-IQWiG’sHR, modified IQWiG method using upper confidence interval limit based on IQWiG’s thresholds (transformation into HR-scaled thresholds using the
conversion formula proposed by VanderWeele2); ROC, Receiver Operating Characteristic; trueHR, true underlying hazard ratio for data generation (trueHR =
designHR$HRvar).
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the Spearman correlation clearly depict a low positive relationship
between ESMO’s dual rule and IQWiG’s in most scenarios. Only
moderate treatment effects lead to similar results for both
methods, whereas results differ otherwise.

Across all simulated scenarios, IQWiG’s and Mod-IQWiG’sHR
rules usually provide a lower proportion of maximal scores,
making the methods more conservative than ESMO’s dual rule.
Furthermore, Mod-IQWiG’sHR rule is even more conservative than
IQWiG’s. Nevertheless, ESMO achieves a downgrading of the
relative benefit assessment with the help of its absolute benefit
rule, which makes the method less liberal. Particularly in trials
with small treatment effects, ESMO’s dual rule can even be slightly
more conservative than IQWiG’s approach. Moreover, the
censoring rate strongly influences both methods, assigning larger
censoring rates with larger proportions of maximal scores (Fig. 3).
This is a consequence of more information being available with a
larger censoring rate due to a larger sample size leading to a
narrower estimated CI and thus to a larger proportion of maximal
scores, as compared to the same scenario with less censoring. Note
that, in our simulation, we included the censoring rate in our
sample size calculation, leading to differing sample sizes between
these 2 scenarios. Accordingly, this resulted in the (on average)
same number of events in both scenarios. Thus, a larger censoring
rate is accompanied with more patients, which are censored over
the course of the simulated study. This means that additional
patients belong to the “patients at risk” population. Therefore,
comparing these 2 scenarios, the one with a larger censoring rate
does have more information because it was included in the sample
size calculation.
In addition, the ROC curves (Fig. 4) showed that categorizing the
additional benefit based onHR2provides a better TPR aswell as FPR
than using HR1. This is a result of the estimated HR2 increasing
faster over the range of simulated HRs (0.3-0.9) compared with the
HR1 estimates. Subsequently, it is easier to find a cutoff value that
categorizes the simulated trials into deserving or not deserving a
maximal grading. If no sample size calculation is performed and
hence a fixed sample size is present, the estimated HR2 and HR1

would increase similarly over the range of simulatedHRs and hence
the ROC curves of HR2 and HR1 would be the same. In real study
application, however, a sample size calculation ismandatory due to
various reasons, such as ethics, time, and costs. Then again, the
choice of the threshold for categorization is very important;
otherwise, unacceptably large FPR or low TPR would occur. For
example, using the current ESMO threshold for its dual rule, ESMO’s
dual rule shows very poor FPR, leading to easily achievablemaximal
scores. Hence, if one uses HR2 instead of HR1, one can select a
threshold to achieve an FPR rate similar to one of the IQWiG
methods while simultaneously achieving a higher TPR rate, similar
to ESMO’s dual rule.

In practice, trials are often planned with an erroneously over-
estimated or underestimated treatment effect, leading to over- or
underpowered trials and resulting in higher or lower percentages
of maximal scores for the methods, which could possibly lead to
deliberate overpowering to achieve a higher additional benefit
grading. In this case, ESMO’s dual rule behaves a bit more
conservatively than IQWiG’s method. Nevertheless, the in-
stitutions that perform the assessment for additional benefit
should closely monitor this aspect to avoid the exploitation of this



Figure 6. Proportion of maximal scores of all significant trials for Mod-IQWiG’sHR (light-green) IQWiG’s (dark-green), ESMO’s relative
benefit rule (blue) and ESMO’s dual rule (violet). Illustrated using line charts for different subscenarios of scenario 3 (various failure time
distributions) and scenario 4 (delayed treatment effect: non-proportional hazards / non-constant hazard ratio) with a median survival
time for the control group of 12 months, designHRs (0.3-0.9), censoring rates (20% and 60%), and power of 90%.

designHR indicates design hazard ratio, used for sample size calculation; ESMO, European Society for Medical Oncology; ESMORB, ESMO’s method using only the relative
benefit rule; Exp. prop. haz., exponential distributed failure times with proportional hazards (standard scenario 1); Gomp. prop. haz., Gompertz distributed failure times
with proportional hazards (scenario 3); IQWiG, Institute for Quality and Efficiency in Health Care; IQWiG’s, IQWiG’s method using relative risk scaled thresholds; Mod-
IQWiG’sHR, modified IQWiG method using upper confidence interval limit based on IQWiG’s thresholds (transformation into HR-scaled thresholds using the conversion
formula proposed by VanderWeele2); Piece-wise exp. (non. prop. haz.), piece-wise exponential distributed failure times with non-proportional hazards / non-constant
hazard ratio leading to a delayed treatment effect (scenario 4); trueHR, true underlying hazard ratio for data generation; Weib. prop. haz., Weibull distributed failure
times with proportional hazards (scenario 3).
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weakness. A possible different solution might be Mod-IQWiG’sHR,
which reduces the probability of maximal scores to a moderate
amount; however, in most other cases, it is very conservative.

Furthermore, the simulation study showed that ESMO’s dual
rule is susceptible to the underlying failure time distribution. In
case of non-exponential distributions such as Gompertz and
Weibull, ESMO’s absolute benefit rule drastically decreases or in-
creases the proportion of maximal score, which is unfavorable
considering proportional hazards were still present in these sce-
narios, thus making similar results as in the standard exponential
case desirable. IQWiG’s method is not affected by non-exponential
distributions and therefore provides a better solution. In case of
non-proportional / non-constant HR, such as trials with delayed
treatment effects, both methods have a reduced proportion of
maximal scores, which is a desirable conservative behavior.
Nevertheless, ESMO’s maximal score proportion is only slightly
reduced and thus IQWiG’s method performs more favorably in
this case. Note that, in cases of delayed treatment effect with
similar median survival times in both treatment groups, ESMO’s
method will directly assign only the lowest score (Fig. 1). In our
simulation study, only situations with medT .. medC have been
considered so that ESMO’s method is not being punished by its
design.
Conclusions

IQWiG’s and ESMO’s additional benefit rules show a high
positive association for moderate treatment effects, assigning
similar scoring distributions, yet our research shows that IQWiG’s
additional benefit assessment method is more conservative than
ESMO’s dual rule in most scenarios. Especially with various un-
derlying failure time distributions such as Weibull and Gompertz
still adhering to the proportional hazard assumption, ESMO’s rule
tends to be more susceptible leading to an extremely high or low
percentage of maximal scores. In contrast, IQWiG’s method pro-
vides similar results as with exponentially distributed failure
times.

The concern that the use of the lower CI limit could lead to a
larger probability of higher grades,5,6 possibly crediting studies
with smaller sample size and hence with a wider CI, is partly
justified. In scenarios with large treatment effects, ESMO’s relative
benefit rule, which uses the HR2, has a higher probability of
maximal grades than IQWIG’s method, which uses the HR1.
Nevertheless, the higher probabilities also depend on the choice of
the thresholds rather than on HR2 and HR1 alone. Furthermore,
our research confirms Dafni et al’s7 statement that the HR2 should
be used in preference to the PE. Nevertheless, they also state that
no approach can be perfect, which can be supported by our
findings; ie, different thresholds need to be chosen for different
definitions of justified maximal grading (ddeserved, Fig. 4).
Furthermore, our research shows that the PE might be superior
compared with the HR1 and might hence be a valid alternative.
Therefore, the assumption that the CI provides more information
than using the PE of the HR,1,3,4,7 as it considers the variability of
the HR estimate, cannot be confirmed. Besides the comparison of
HR2 and the PE our research also includes HR1 in the comparison.
Hence, our investigation takes a deeper look into the comparison
of ESMO’s dual rule and IQWiG’s method.

Our research has several strengths including an extensive
simulation study covering a wide range of censoring rates, failure
time distributions, and treatment effects. We investigate which
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statistical measure suits the additional benefit assessment better,
and thus, our research is a first detailed insight in the comparison
of IQWiG’s and ESMO’s method. Furthermore, we constructed our
research reproducibly. Nevertheless, 3 limitations are present as
well. First, we only investigated the statistical aspect of the
methods and hence did not include bonus point adjustments.
Second, we assumed that the maximal scores of the methods can
be considered as equal. It can be argued that this assumption is
not reasonable and hence our conclusion might not be fair.
Nevertheless, our research still features conclusions without this
assumption (ROC, correlation), which do support the findings of
the results with this assumption. Finally, our censoring mecha-
nism is partly depending on the event times (see Appendix in
Supplemental Materials found at https://doi.org/10.1016/j.jval.2
022.05.015) and consequently introduces a small bias to the HR
estimation. Given that this introduced bias is affecting all
compared methods equally, the method comparison described in
this article is not substantially affected. In addition, there are still a
number of gaps in knowledge around the additional benefit
assessment, which should be addressed in future research:

� In case of Gompertz (shape = 0.2) distributed failure times,
ESMO’s method shows a very different behavior compared with
other distributions. This difference might be influenced by
ESMO’s absolute benefit rule, because the relative benefit rule
(Fig. 6, blue line), which uses HR2, is not affected by different
underlying failure time distributions. The same can be seen for
IQWiG’s method, which also only depends on the 95% HR-CI
and is not substantially affected by different failure time dis-
tributions. Nevertheless, the considerable difference of ESMO’s
method in case of Gompertz (shape = 0.2) compared with other
distributions is still quite astonishing and the reasons behind it
are not completely clear.

� Using the HR-PE compared with the HR1 for an additional
benefit assessment might be a valid alternative if the PE is not
biased as, for example, for trials that were stopped early at a
preplanned interim analysis. Hence, the additional benefit
assessment method developed by the American Society of
Clinical Oncology, which uses the HR-PE creating a continuous
assessment of a new cancer treatment,19,20 should be included
in future research.

� The threshold of 0.43 for the perfect classifier using the lower CI
limit after a significant trial is solely based on the ROC curves
(Fig. 4) and hence still needs to be further investigated in
different scenarios with various design aspects, for example,
sample sizes and effect sizes.

� If the proportional hazards assumption is violated, then the HR-
PE, along with its CI, will be strongly influenced by the follow-
up time. This aspect is explored partly by scenario 4 in our
research but still requires further investigation, especially since
the follow-up time depends on the assumed medC (FU = 2$
medC) in our simulations. Furthermore, in the area of immuno-
oncology treatments, this field might be especially of interest
because a proportional hazards violation is suspected.

In summary, focusing on the statistical aspect of the methods,
ESMO’s dual rule tends to be more liberal and more susceptible to
various failure time distributions than IQWiG’s method. Further-
more, ESMO’s poor FPR and the characteristic of not being able to
distinguish between treatments with decent effects, leading to
generously assigning of maximal scores, need to be taken in
consideration in further versions of this method. Nonetheless,
when solely regarding the CI limits as decision criterion, HR2

seems to be a better solution leading to a higher TPR than HR1
without increasing the FPR, if appropriate thresholds are chosen.
Thus, IQWiG’s method might need to be adapted accordingly to
achieve a better overall classification.
Supplemental Materials

Supplementary data associated with this article can be found in the
online version at https://doi.org/10.1016/j.jval.2022.05.015.
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