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Abstract

Project Optimus is a US Food and Drug Administration (FDA) initiative to reform dose 

selection in oncology drug development. Here, we focus on tumor evolution, a broadly observed 

phenomenon that invariably leads to therapeutic failure and disease relapse, and its effect on 

the exposure-response (E-R) relationships of oncology drugs. We propose a greater emphasis 

on tumor evolution during clinical development to facilitate the selection of optimal doses for 

molecularly targeted therapies and immunotherapies in oncology.
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Dose finding in light of tumor evolution

Demonstration of superior clinical efficacy is a major barrier to the approval of 

investigational oncology drugs. For indications with limited treatment options, sponsors 

frequently conduct efficacy trials under expedited timelines in hopes of making their therapy 

available to patients in need as quickly as possible. These factors lead sponsors to use high 

drug doses in hopes of maximizing drug exposure, eliciting strong signals of efficacy, and 

supporting expeditious regulatory approval. This “more is better” dogma is rooted in the use 

of cytotoxic chemotherapies at their maximum tolerated dose (MTD) to treat hematological 

malignancies [1]. Physicians may prefer to use the MTD despite increased toxicity out of 
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fear that lower doses, while more tolerable, could lead to subtherapeutic drug exposure and 

therapeutic failure.

Recently, the MTD paradigm has been challenged by nonlinear and even flat E-R 

relationships observed during the clinical development of molecularly targeted therapies 

and immunotherapies [2]. For these modalities, higher doses, especially when administered 

chronically, can incur significant additional toxicity. One recent high-profile example of 

this was the approval of sotorasib, which exhibited an unclear relationship between drug 

exposure and response metrics including overall response rate (ORR), progression-free 

survival (PFS), and overall survival (OS) (Table 1). If lower doses are found to be non-

inferior to the approved 960 mg dose, which comprises eight 120 mg tablets, patients may 

benefit from reduced pill burden as well as potentially lower rates of gastrointestinal side 

effects. To address these shortcomings, FDA launched Project Optimus to reform dose 

optimization and selection strategies used in oncology drug development [3].

This work contributes an evolutionary perspective to the misconception that higher doses 

invariably confer greater efficacy. Tumor evolution may contribute to the E-R relationships 

associated with targeted therapies and immunotherapies. We apply basic tumor evolutionary 

models composed of heterogenous cell populations and a hypothetical targeted therapy 

to illustrate how tumor evolution can contribute to saturable drug pharmacodynamics and 

comparable or superior long-term efficacy at doses below the MTD [4].

Tumor heterogeneity is a key factor contributing to therapeutic failure, drug resistance, and 

mortality. Optimizing clinical outcomes requires consideration for how evolutionary forces 

affect tumor growth and heterogeneity over time. By design, targeted therapies are highly 

specific to cell populations harboring particular genetic alterations. For tumors composed 

of cell populations with diverse genetic backgrounds, sensitivity to targeted therapy is 

variable and outgrowth of resistant populations is inevitable. One clear example is BRAF 

V600E-targeting therapies for melanoma, which trigger quick, transient responses followed 

by rapid relapse [5]. This unfortunate reality limits the benefit of many targeted therapies 

to short-term tumor control and significantly confounds their E-R relationships, as dose 

selection based on early responses may not yield optimal long-term tumor control. In 

addition, the relative expression of a target between tumor and healthy tissue may limit the 

upper range of doses able to be explored while maintaining acceptable levels of toxicity. It is 

regrettable that our ever-growing knowledge of tumor heterogeneity and clonal evolution is 

not yet routinely considered during clinical trial design and dose selection, as it may provide 

key insights to the optimization of targeted therapies [6].

Evolutionary origins of diverse E-R relationships

Tumor heterogeneity, which both drives and results from tumor evolution, refers to 

the co-existence of cell populations with distinct genotypes and phenotypes within a 

primary tumor and its metastases. Consider a simple tumor of two subpopulations: one 

with genetic alterations that confer susceptibility to a targeted therapy, and one without. 

Cells in the second population are intrinsically resistant to treatment and compete with 

sensitive cells for limited resources [7], [8]. High drug exposure causes swift and extensive 
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elimination of sensitive cell populations, reducing the competition faced by resistant 

populations (“competitive release”) and facilitating their outgrowth. The competitive release 

phenomenon has motivated clinical trials that employ novel dosing schedules designed 

to maintain a residual population of sensitive cells that compete with resistant cells 

[9]. The speed at which resistant cells regrow after the treatment-mediated elimination 

of sensitive cells correlates, predictably, with treatment outcomes [10]. We view these 

efforts as paradigm-shifting for oncology because they challenge conventional thought and 

recharacterize cancer as a long-term disease to be managed through evolutionarily-motivated 

treatment strategies.

Here, we propose that competition and inter-population interactions profoundly influence 

the E-R relationships of oncology drugs (Fig 1). To illustrate this point, we first model 

tumors with a homogeneous population of sensitive cells to serve as a reference. Next, we 

adapt a tumor model comprising one subpopulation fully sensitized to treatment and one 

subpopulation with primary resistance. Given the competition for limited resources among 

cancer cells, particularly in late-stage metastatic disease where tumor burden is high, we 

also investigate a scenario where both populations share a carrying capacity that slows 

growth logistically as tumor size increases. We use the Hill function to model treatment 

action against the sensitive population and assume either 100% or 95% of cells are sensitive. 

Finally, we explore an additional scenario with treatment-mediated phenotype switching of 

sensitive cells into resistant cells. Model equations and parameter values are provided in the 

code accompanying this article.

• Scenario 1: homogenous population. The level of tumor heterogeneity largely 

depends on the types and stages of tumors. At the early stage of many 

hematological malignancies, clonal heterogeneity is generally believed to be low 

and maximally tolerated doses may result in the highest likelihood of tumor 

eradication. However, for solid tumors, diverse subclones can co-exist, making 

it challenging to achieve complete tumor eradication. Scenario 1 is presented 

mainly to serve as a comparator.

• Scenario 2: independent clones. Many tumor growth models considered distinct 

tumor clones but not all incorporate clonal interactions. With such a model 

assumption, the potential relationship between tumor early response and long-

term tumor control cannot be appropriately evaluated.

• Scenario 3: clonal competition. Strong evidence for clonal competition during 

therapeutic treatment has been observed in prostate cancer [9].

• Scenario 4: clonal interconversion. It is possible that tumor clones can switch 

their phenotypic status in response to treatment. Tumor phenotypic conversion 

has been observed in colorectal cancer patients during anti-EGFR therapies 

[11]-[13].

In homogenous tumors, higher drug exposure resulted in greater tumor killing (Fig 1A), 

similar to intensive chemotherapy for hematologic malignancies. In tumors with mixed 

sensitivity to targeted therapy, however, E-R relationships were more shallow, flat, or even 

inverse (Fig 1B-D), depending on the manner and extent to which the subpopulations 
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interacted. These response patterns were observed regardless of whether populations 

were assumed to grow independently or in competition and were exacerbated by modest 

treatment-mediated phenotype switching of cells from sensitive to resistant. Clinically 

observed examples of flat, inverse, and unclear E-R relationships are noted in Table 1.

We also simulated 5-patient cohorts and incorporated heterogeneity by modeling patients 

with varying levels of resistant cell regrowth rates. There was no meaningful E-R 

relationship across 3 exposure levels when comparing the average tumor size reduction 

at a 12-week landmark timepoint (Fig 1E). Given this scenario, it is possible that 

heterogeneity in patient tumor biology (e.g., regrowth rates) has significantly confounded 

E-R relationships. Though the regrowth rate of resistant cells is not estimable prior to 

enrollment, our simulations provide a proof of concept that greater focus should be placed 

on characterizing intratumoral heterogeneity and the clonal fraction of therapy-sensitizing 

alterations during patient enrollment. Further efforts to design oncology trials with tumor 

heterogeneity and evolution in mind may be warranted by stratifying patients not only on by 

the presence of a genetic alteration, but also by its clonal fraction.

Insights for dose-finding studies

Patient populations.

The clinical efficacy of targeted therapies depends not only on tumor evolution, but 

the complex interplay between tumor evolution and the ecological system where the 

tumor resides. This includes biophysical and immunological factors within the tumor 

microenvironment as well as patient physiological conditions. Sponsors investigating novel 

targeted therapies may be motivated to enroll all patients with the genetic alteration 

of interest despite considerable variability in disease histology and treatment history. 

Enrolling sufficient numbers of patients with similar tumor biology and treatment history 

is critical to characterizing E-R relationships within subpopulations but can be unrealistic 

given these biologically diverse and often heavily pretreated populations. The resulting 

heterogeneity in tumor composition, anatomical distribution of lesion sites, and baseline 

patient characteristics could confound outcomes and the observed E-R relationship (Table 

1, Figure 1) [14]. Other factors, such as stromal cells within the tumor microenvironment 

or systemic immune status, may influence tumor evolutionary trajectories. Given these 

differences, there is likely no truly optimal dose for an unselected patient population. 

Additional effort should be made in dose-finding studies to identify optimal dose regimens 

for specific patient populations characterized by key disease features such as the presence of 

a given genetic alteration and its clonal fraction.

Longitudinal biomarkers.

Early changes in tumor size metrics serve as a signal for drug efficacy but can be insufficient 

to fully elucidate E-R relationships. As shown in Figure 1, given a certain proportion 

of resistant cells prior to treatment, higher drug exposure invariably leads to deeper and 

faster responses. However, a swift, initial decline may be associated with stronger selective 

pressure for resistant lineages that survive and repopulate the tumor. The durability of 

response (DOR) elicited by higher drug exposure can be comparable or inferior to those 
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elicited by lower exposure, as noted elsewhere [4]; this is particularly apparent in tumors 

with high regrowth rates. In clinical terms, lower drug exposure in high-regrowth tumors 

might result in longer DOR and PFS. Mechanistically, longer DOR could be conferred 

through sufficient removal of sensitive cells to achieve an objective response while sparing 

enough to “crowd out” or thwart resistant cell growth. This suggests later-stage dose finding 

studies may benefit from emphasizing long-term outcomes (e.g., DOR, PFS, and OS) and 

deprioritizing short-term response metrics such as ORR; dose selection based on ORR from 

early trials alone might lead to supratherapeutic drug exposure, greater toxicity, and worse 

long-term outcomes. Longitudinal measures of response and tumor evolutionary dynamics, 

including radiomics and blood-based biomarkers, could prove valuable in evaluating E-R 

relationships in conjunction with standard pharmacokinetic (PK) and pharmacodynamic 

(PD) metrics. Rates of ctDNA shedding have been correlated with early cancer detection 

and could be useful for monitoring residual disease [15]-[17]. Further refinement of these 

methodologies may help identify distinct cancer cell lineages and quantify their relative 

proportions throughout the course of treatment [18], [19].

In conclusion, while substantial evidence exists to support alternative dosing strategies for 

targeted therapies, robust characterization of E-R relationships has been a low priority 

during clinical development. Evolutionary theory, coupled with conventional PK/PD 

modeling approaches, could be valuable to elucidating E-R relationships for targeted 

therapies and supporting the selection of doses and regimens that provide optimal long-

term clinical benefit. Discovering and validating biomarkers of tumor evolution should be 

prioritized to serve this aim.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

Figures were prepared in BioRender and MATLAB R2020b.

Funding

This work was supported by the National Institute of Health (R35 GM119661).

REFERENCES

[1]. Savarese DM, Hsieh C, and Stewart FM, “Clinical impact of chemotherapy dose escalation in 
patients with hematologic malignancies and solid tumors,” J. Clin. Oncol. Off. J. Am. Soc. Clin. 
Oncol, vol. 15, no. 8, pp. 2981–2995, Aug. 1997, doi: 10.1200/JCO.1997.15.8.2981.

[2]. Kawakatsu S et al. , “Confounding factors in exposure-response analyses and mitigation strategies 
for monoclonal antibodies in oncology,” Br. J. Clin. Pharmacol, vol. 87, no. 6, pp. 2493–2501, 
Jun. 2021, doi: 10.1111/bcp.14662. [PubMed: 33217012] 

[3]. U.S. Food & Drug Administration, “Project Optimus.” https://www.fda.gov/about-fda/oncology-
center-excellence/project-optimus (accessed Jun. 06, 2022).

[4]. Jain RK et al. , “Phase I oncology studies: evidence that in the era of targeted therapies patients on 
lower doses do not fare worse,” Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, vol. 16, no. 4, 
pp. 1289–1297, Feb. 2010, doi: 10.1158/1078-0432.CCR-09-2684.

Qi et al. Page 5

Pharm Res. Author manuscript; available in PMC 2022 December 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.fda.gov/about-fda/oncology-center-excellence/project-optimus
https://www.fda.gov/about-fda/oncology-center-excellence/project-optimus


[5]. Holderfield M, Deuker MM, McCormick F, and McMahon M, “Targeting RAF kinases for cancer 
therapy: BRAF-mutated melanoma and beyond,” Nat. Rev. Cancer, vol. 14, no. 7, pp. 455–467, 
Jul. 2014, doi: 10.1038/nrc3760. [PubMed: 24957944] 

[6]. Poels KE et al. , “Identification of optimal dosing schedules of dacomitinib and osimertinib for a 
phase I/II trial in advanced EGFR-mutant non-small cell lung cancer,” Nat. Commun, vol. 12, no. 
1, p. 3697, Jun. 2021, doi: 10.1038/s41467-021-23912-4. [PubMed: 34140482] 

[7]. Gatenby RA, Silva AS, Gillies RJ, and Frieden BR, “Adaptive therapy,” Cancer Res., vol. 69, no. 
11, pp. 4894–4903, Jun. 2009, doi: 10.1158/0008-5472.CAN-08-3658. [PubMed: 19487300] 

[8]. Nowell PC, “The clonal evolution of tumor cell populations,” Science, vol. 194, no. 4260, pp. 
23–28, Oct. 1976, doi: 10.1126/science.959840. [PubMed: 959840] 

[9]. Zhang J, Cunningham JJ, Brown JS, and Gatenby RA, “Integrating evolutionary dynamics into 
treatment of metastatic castrate-resistant prostate cancer,” Nat. Commun, vol. 8, no. 1, p. 1816, 
Nov. 2017, doi: 10.1038/s41467-017-01968-5. [PubMed: 29180633] 

[10]. Zhou J, Liu Y, Zhang Y, Li Q, and Cao Y, “Modeling Tumor Evolutionary Dynamics to Predict 
Clinical Outcomes for Patients with Metastatic Colorectal Cancer: A Retrospective Analysis,” 
Cancer Res., vol. 80, no. 3, pp. 591–601, Feb. 2020, doi: 10.1158/0008-5472.CAN-19-1940. 
[PubMed: 31676575] 

[11]. Boumahdi S and de Sauvage FJ, “The great escape: tumour cell plasticity in resistance to 
targeted therapy,” Nat. Rev. Drug Discov, vol. 19, no. 1, pp. 39–56, Jan. 2020, doi: 10.1038/
s41573-019-0044-1. [PubMed: 31601994] 

[12]. Cremolini C et al. , “Rechallenge for Patients With RAS and BRAF Wild-Type Metastatic 
Colorectal Cancer With Acquired Resistance to First-line Cetuximab and Irinotecan: A Phase 
2 Single-Arm Clinical Trial,” JAMA Oncol., vol. 5, no. 3, p. 343, Mar. 2019, doi: 10.1001/
jamaoncol.2018.5080. [PubMed: 30476968] 

[13]. Woolston A et al. , “Genomic and Transcriptomic Determinants of Therapy Resistance and 
Immune Landscape Evolution during Anti-EGFR Treatment in Colorectal Cancer,” Cancer Cell, 
vol. 36, no. 1, pp. 35–50.e9, Jul. 2019, doi: 10.1016/j.ccell.2019.05.013. [PubMed: 31287991] 

[14]. Zhou J, Li Q, and Cao Y, “Spatiotemporal Heterogeneity across Metastases and Organ-Specific 
Response Informs Drug Efficacy and Patient Survival in Colorectal Cancer,” Cancer Res., 
vol. 81, no. 9, pp. 2522–2533, May 2021, doi: 10.1158/0008-5472.CAN-20-3665. [PubMed: 
33589516] 

[15]. Avanzini S et al. , “A mathematical model of ctDNA shedding predicts tumor detection size,” Sci. 
Adv, vol. 6, no. 50, p. eabc4308, Dec. 2020, doi: 10.1126/sciadv.abc4308. [PubMed: 33310847] 

[16]. Garcia-Murillas I et al. , “Assessment of Molecular Relapse Detection in Early-Stage 
Breast Cancer,” JAMA Oncol., vol. 5, no. 10, pp. 1473–1478, Oct. 2019, doi: 10.1001/
jamaoncol.2019.1838. [PubMed: 31369045] 

[17]. Iams WT et al. , “Blood-Based Surveillance Monitoring of Circulating Tumor DNA From 
Patients With SCLC Detects Disease Relapse and Predicts Death in Patients With Limited-
Stage Disease,” JTO Clin. Res. Rep, vol. 1, no. 2, p. 100024, Jun. 2020, doi: 10.1016/
j.jtocrr.2020.100024. [PubMed: 34589931] 

[18]. Weber S et al. , “Dynamic Changes of Circulating Tumor DNA Predict Clinical Outcome 
in Patients With Advanced Non–Small-Cell Lung Cancer Treated With Immune Checkpoint 
Inhibitors,” JCO Precis. Oncol, no. 5, pp. 1540–1553, Nov. 2021, doi: 10.1200/PO.21.00182. 
[PubMed: 34994642] 

[19]. Almodovar K et al. , “Longitudinal Cell-Free DNA Analysis in Patients with Small Cell Lung 
Cancer Reveals Dynamic Insights into Treatment Efficacy and Disease Relapse,” J. Thorac. 
Oncol. Off. Publ. Int. Assoc. Study Lung Cancer, vol. 13, no. 1, pp. 112–123, Jan. 2018, doi: 
10.1016/j.jtho.2017.09.1951.

Qi et al. Page 6

Pharm Res. Author manuscript; available in PMC 2022 December 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Impact of intratumoral heterogeneity on exposure-response relationships
A. Anti-tumor activity at 5 exposure levels in a homogenous population of sensitive cells. 

Left: Normalized tumor growth over 24 weeks of therapy with 4-week intervals between 

radiographic assessment of tumor volume. AUC, area under the curve. Horizontal dashed 

lines indicate thresholds for stable disease and progressive disease per RECIST v1.1 criteria. 

Center: Patient RECIST v1.1 classification over 6 months of treatment. SD, stable disease; 

PR, partial response; PD, progressive disease. Right: responses at the 12-week landmark 

time across 3 exposure levels.

B. (A) for a heterogenous population of sensitive (95%) and resistant (5%) cells with 

independent growth rates.
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C. (A) for a heterogenous population of sensitive (95%) and resistant (5%) cells with a 

shared carrying capacity.

D. (A) for a heterogenous population of sensitive (95%) and resistant (5%) cells with a 

shared carrying capacity and treatment-mediated conversion of sensitive cells to resistant 

cells.

E. Impact of inter-patient variability in resistant cell growth rates on rebound kinetics and 

landmark-based exposure response relationships. Simulations were performed as in (C), 

spanning 3 levels of drug exposure and 5 levels of resistant cell regrowth. Responses at each 

exposure level were averaged at the 12-week landmark time (left).
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Table 1:

Examples of FDA-approved drugs with flat, inverse, or unclear observed E-R relationships.

Drug Indicated
population

Exposure
metric

Response
metric Description

atezolizumab UC
Cycle 1 Ctrough, 

Steady-state AUC
ORR No evaluated exposure metrics were significant 

predictors of ORR

capmatinib
metastatic NSCLC with 
MET exon 14 skipping 

mutation
Average Ctrough ORR No E-R relationship for ORR

ceritinib ALK+ metastatic NSCLC Steady-state Ctrough ORR/PFS No E-R relationship for ORR or PFS

enfortumab 
vedotin-ejfv metastatic UC

Cycle 1 AUC, 
Cmax, Ctrough

BOR
Positive E-R relationship with intact drug; 
inverse relationship with free monomethyl 

auristatin E

entrectinib ROS1+ metastatic NSCLC Cavg/ Ctrough ORR
No relationship between entrectinib exposure 
and ORR. Response rates were comparable 

across exposure quartiles

erdafitinib
Metastatic UC with 

susceptible FGFR2/3 
mutations

Average daily 
AUC0-24, Ctrough, 

Cmax

ORR
No significant differences in ORR between 

terciles of average daily AUCfree up to Day 14 or 
week 6 of treatment

fam-trastuzumab 
deruxtecan HER2+ metastatic BC

Cycle 1/steady-
state Cavg, Cmax, 

Ctrough, AUC
ORR

Trend toward increased ORR with increased 
intact DS-8201a exposure but not with increased 

released drug exposure. ORR increased with 
greater Cavg

idelalisib Refractory/relapsed indolent 
NHL/CLL

Steady-state Ctau ORR/PFS

No relationship between ORR and Ctau in 
patients with indolent NHL. Idelalisib Ctau 

quartile groups uniformly beneficial relative to 
placebo

nivolumab MSI-H or dMMR metastatic 
CRC

Cycle 1-2 Cavg, 
Ctroug

ORR

No E-R relationship observed, similar to other 
E-R analyses for efficacy in previous reviews 
(Reference ID: 4229532) demonstrating lower 

Ctrough achieved with 480 mg Q4W compared to 
3 mg/kg is unlikely to compromise efficacy

osimertinib T790M+ metastatic NSCLC Steady-state AUC ORR Response rate concluded to be relatively flat 
across a wide exposure range

pembrolizumab metastatic melanoma Steady-state AUC ORR Flat E-R relationship used to support approval of 
2 mg/kg dosing

pemigatinib

Metastatic 
cholangiocarcinoma with 

FGF2 fusion or 
rearrangement

Steady-state Cmax, 
AUC

ORR/PFS
Lowest ORR in highest Cmax quartile. Non-
significant difference in PFS in the highest 

AUCss quartile

ponatinib CML or Philadelphia 
chromosome ALL

Dose intensity 
(average daily 

dose)
MaHR

Significant E-R relationship in CP-CML 
patients, but not in AP-CML/BP-CML/Ph+ ALL 

patients

pralsetinib RET+ metastatic NSCLC Steady-state Cavg
BOR/PFS/D

OR
No E-R analysis relationship in the primary 

efficacy population

sacituzumab 
govitecan-hziy metastatic TNBC Cycle 1 AUC ORR/PFS/O

S
No correlation between response and AUC of 

any of the drug’s constitutive elements

sotorasib KRAS G21C-mutated 
NSCLC

Steady-state Cavg, 
Ctrough

OS/PFS/OR
R

Higher exposure associated with worse efficacy. 
Apparent inverse E-R relationship likely 

confounded by baseline disease burden on PK 
and efficacy outcomes

zanubrutinib MCL
Steady-state AUC, 

Ctrough
ORR Positive E-R trends, but no statistically 

significant relationship identified

All data are publicly available from FDA summary and clinical pharmacology review documents.
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ALL, acute lymphoblastic leukemia; ALK, anaplastic lymphoma kinase; AUC, area under concentration-time curve; BC, breast cancer; BOR, best 
objective response; CLL, chronic lymphocytic leukemia; CML, chronic myeloid leukemia; CRC, colorectal cancer; dMMR, deficient mismatch 
repair; FGFR2/3, fibroblast growth factor receptor 2 or 3; HER2, human epidermal growth factor receptor 2; KRAS, Kirsten rat sarcoma virus; 
MaHR, major hematologic response; MCyR, major cytogenetic response; MCL, mantle cell lymphoma; MET, mesenchymal epithelial transition 
factor receptor; MM, multiple myeloma; MSI-H, microsatellite instability-high; NHL, non-Hodgkin’s lymphoma; NSCLC, non-small cell lung 
cancer; ORR, overall response rate; OS, overall survival; PFS, progression-free survival; PK, pharmacokinetics; RET, ret proto-oncogene; ROS1, 
ROS Proto-Oncogene 1 Receptor Tyrosine Kinase; TNBC, triple-negative breast cancer; UC, urothelial carcinoma
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